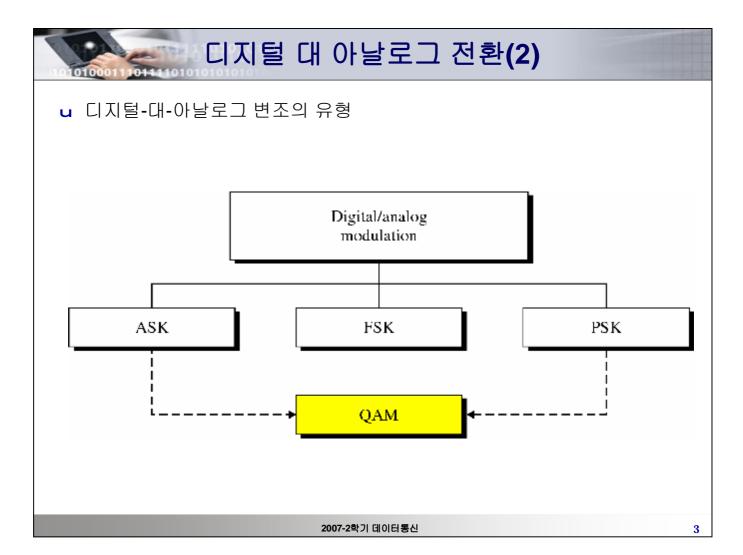


Part 2. 물리층

Chapter 5. 아날로그 전송

1


010100011101411

디지털 대 아날로그 전환 (1)

- u 변조(Modulation)
 - Ⅰ 디지털 데이터를 아날로그 신호로 변환
 - Ⅰ 아날로그 신호의 진폭, 주파수, 위상 등의 특성을 변경하여 표현
- u 진폭편이변조(ASK, Amplitude Shift Keying)
- u 주파수편이변조(FSK, Frequency Shift Keying)
- u 위상편이변조(PSK, Phase Shift Keying)
- u 구상편이변조(QAM, Quadrature Amplitude Modulation)

2007-2학기 데이터통신

디지털 대 아날로그 전환(3)

- u 비트율(Bit rate): 초당 전송되는 비트의 수
- u 보오율(Baud rate):비트들을 표현하는데 필요한 초당 신호단위 수 * 비트율은 각 신호단위에 표현되는 비트 수와 보오율의 곱이므로 보오 율은 비트율보다 적거나 같다.
- u 반송파신호(Carrier Signal)
 - Ⅰ 정보신호를 위한 기본 고주파 신호
 - Ⅰ 디지털 정보는 반송파 신호의 특징 중 하나 이상을 변경하여 표현됨

디지털 대 아날로그 전환 (4)

u 예제 5.1

아날로그 신호가 각 신호 요소에 4 비트를 전달한다. 초당 1,000개 의 신호요소가 보내진다면 보오율과 비트율은?

$$S = N \times \frac{1}{r}$$
 or $N = S \times r = 1000 \times 4 = 4000 \text{ bps}$

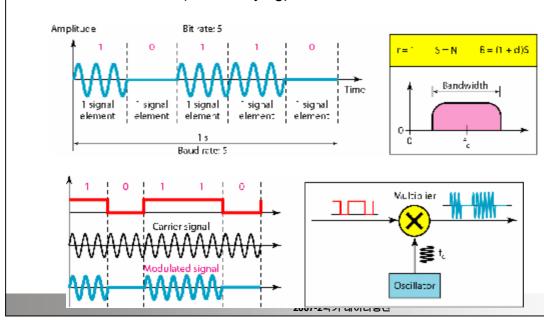
u 예제 5.2

어떤 아날로그 신호으 비트율이 8000이고 보오율이 1000보오이 다. 각 신호 요소에는 몇 개의 데이터 요소가 실려지는가? 또 몇 개의 신호 요소가 필요한가?

$$S = N \times \frac{1}{r} \longrightarrow r = \frac{N}{S} = \frac{8000}{1000} = 8 \text{ bits/baud}$$

$$r = \log_2 L \longrightarrow L = 2^r = 2^8 = 256$$

2007-2학기 데이터통신


진폭 편이 변조 (1)

u 진폭편이 변조(ASK:Amplitude Shift Keying)

- Ⅰ 진폭이 변하지만 주파수와 위상은 변하지 않는다
- Ⅰ 보오율과 비트율이 동일

u 이진 ASK

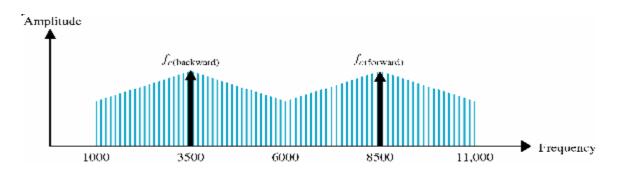
온-오프 편이(on-off keying)

진폭 편이 변조 (2)

- u 보오율과 ASK 대역폭의 관계
 - Ⅰ 반송파는 대역의 중간에 위치함
- u ASK에 요구되는 대역폭
 - B = (1+d) * S
 - Ⅰ B:대역폭, S:보오율, d:회선의 상태와 관련된 계수(초기값은 0)
- u 예제 5.3

200kHz~300kHz에 걸치는 100kHz의 대역을 사용. d=1인 ASK를 사용하는 경우 반송파의 주파수와 비트율은?

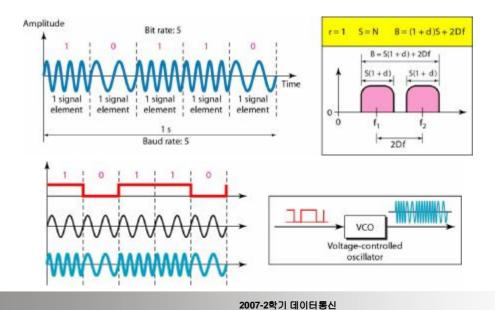
$$B = (1+d) \times S = 2 \times N \times \frac{1}{r} = 2 \times N = 100 \text{ kHz}$$
 \longrightarrow $N = 50 \text{ kbps}$


2007-2학기 데이터통신

~

진폭 편이 변조 (3)

- u 예제
 - □ 10,000Hz(1,000~11,000Hz)의 대역폭에 대해 시스템의 전이중 ASK 다이어그램을 그리시오. 각 방향의 반송파와 대역폭을 구하라. (d=0인 경우)
- u 풀이
 - □ 각 방향의 ASK는 B = 10,000/2 = 5,000Hz반송주파수는 각 대역의 중간지점

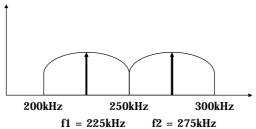

$$f_{c(forward)} = 1,000 + 5,000/2 = 3,500Hz$$

 $f_{c(backward)} = 11,000 - 5,000/2 = 8,500Hz$

2007-2학기 데이터통신

주파수 편이 변조 (1)

- u 주파수 편이 변조 (FSK:Frequency Shift Keying)
 - Ⅰ 비트 1/0을 표현하기 위해 신호의 주파수를 변경
 - ∅ 두 개의 반송파를 사용
 - Ⅰ 진폭과 위상은 일정하게 유지
 - Ⅰ 보오율과 비트율이 동일



주파수 편이 변조 (2)

- u FSK의 보오율과 대역폭의 관계
 - Ⅰ FSK에 요구되는 대역폭은 신호의 보오율과 두 반송 주파수 차의 합
 - B = $(1+d)S + (f_2 f_1)$
- u 예제 5.5

100kHz의 가용 대역이 영역 200kHz~300kHz에 걸쳐 있다. FSK를 사용하고 d=1인 경우 반송파의 주파수와 비트율은?

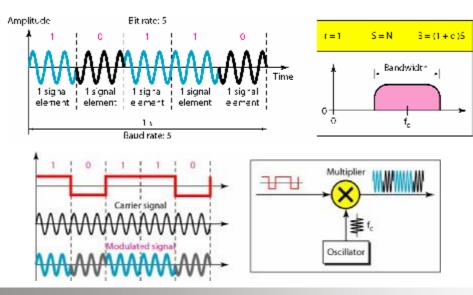
$$B = (1 + d) \times S + 2\Delta f = 100$$
 \implies $2S = 50 \text{ kHz}$ $S = 25 \text{ kbaud}$ $N = 25 \text{ kbps}$

2007-2학기 데이터통신

Λ

주파수 편이 변조 (3)

u예제


- 매체의 대역폭이 12,000Hz이고, 두 반송파 사이의 간격이 최소 2,000Hz가 되어야 할 때, FSK 신호의 최대 비트율은?(이때 d=0이고, 전송은 전이중이다.)
- □ 풀이) 각 방향으로 6000Hz의 대역폭이 할당되고 보오율과 비트율이 동일하므로.

2007-2학기 데이터통신

1

위상 편이 변조 (1)

- u 위상편이 변조 (PSK:Phase Shift Keying)
 - Ⅰ 비트 1/0을 표현하기 위해 위상을 변경
 - Ⅰ 진폭과 주파수는 일정
 - Ⅰ 이진 PSK: 0도와 180도 위상을 사용

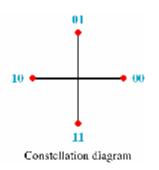
2007-2학기 데이터통신

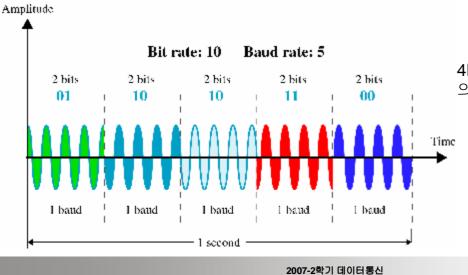
위상 편이 변조 (2)

u PSK성운 (Constellation)

Bit	Phase		
0	0		
1	180		
Rite			

1 0
Constellation diagram


2007-2학기 데이터통신

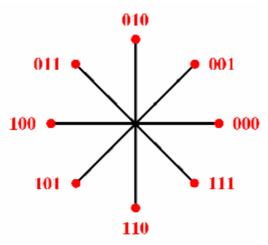

13

위상 편이 변조 (3)

- u 4-PSK
 - Ⅰ 90도 편이로 위상을 변경
 - 4개의 위상을 사용하여 각 위상당2 비트를 표현

Dibit	Phase			
00	0			
01	90			
10	180			
11	270			
Dibit (2 bits)				

4PSK에서 비트율은 보오율 의 2배가 됨

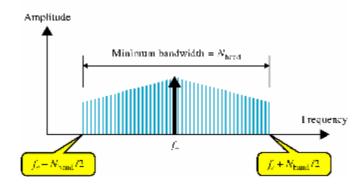

위상 편이 변조 (4)

u 8-PSK

- Ⅰ 45도 편이로 위상을 변조
- Ⅰ 각 위상당 3 비트를 표현
 - Ø 비트율은 보오율의 3배가 됨

Tribit	Phase	
000	0	
001	45	
010	90	
011	135	
100	180	
101	225	
110	270	
111	315	

Tribits (3 bits)

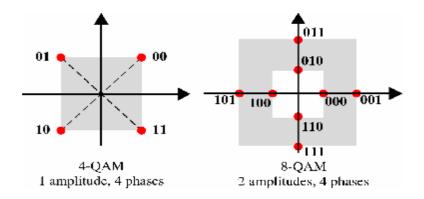

Constellation diagram

2007-2학기 데이터통신

15

위상 편이 변조 (5)

- u PSK에서 보오율과 대역폭의 관계
 - □ PSK의 대역폭(보오율)은 ASK의 대역폭 형태와 동일함
 - □ 그러나 PSK는 ASK보다 높은 비트율을 가질 수 있음

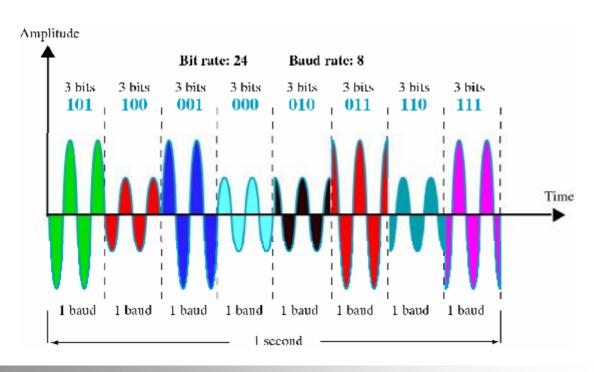


- u 예제 8
 - 2,000bps의 속도로 전송하는 4-PSK신호 전송에 요구되는 대역폭은? 전송은 반이중 방식이다
- u 예제 9
 - Ⅰ 8-PSK신호에 5,000Hz의 대역폭이 주어졌을 때, 보오율과 비트율은?

2007-2학기 데이터통신

구상 진폭 변조 (1)

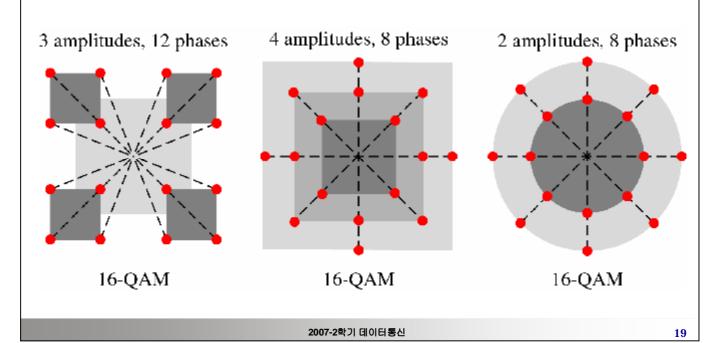
- u 구상 진폭변조(QAM:Quadrature Amplitude Modulation)
 - Ⅰ ASK와 PSK의 조합
 - Ø 무한한 변형이 가능함
 - Ⅰ 대역폭의 제한으로 인해 FSK와의 조합은 의미가 없음
- u 4-QAM과 8-QAM 성운



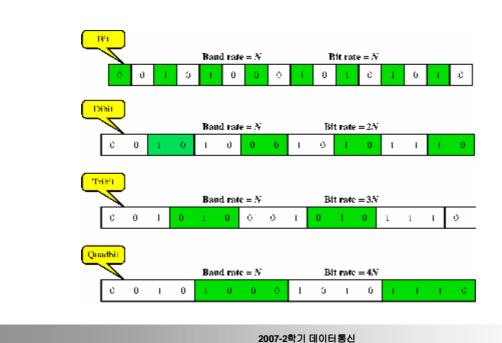
2007-2학기 데이터통신

17

구상 진폭 변조 (3)


u 8-QAM 신호에 대한 시간 영역 도면

2007-2학기 데이터통신


구상 진폭 변조 **(4)**

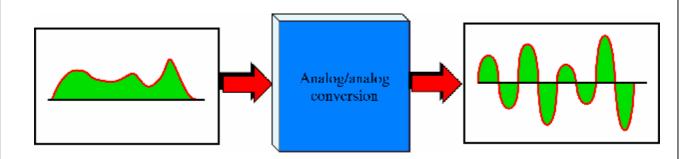
u 16-QAM의 3가지 구성

베트율 vs. 보오율 (1)

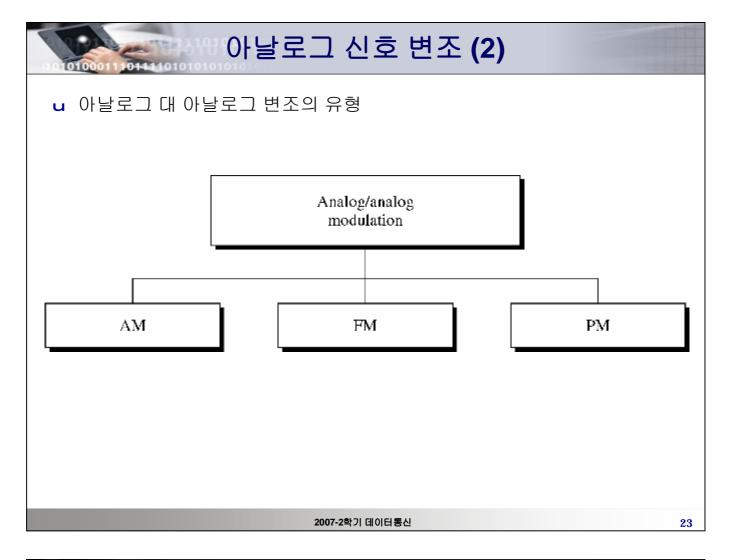
- u 비트율과 보오율
 - Ⅰ 한 신호요소가 n-bit를 나타낼 수 있을 때 비트율은 보오율의 n배가 됨

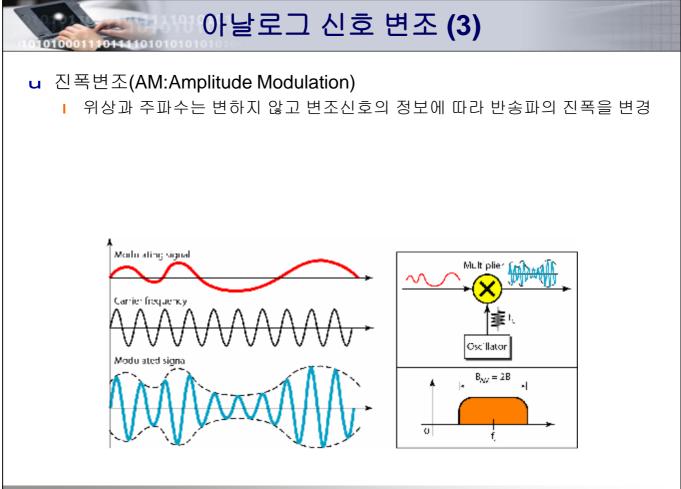
비트율 vs. 보오율 (2)

u 비트율과 보오율 비교


Modulation	Units	Bits/Baud	Baud Rate	Bit Rate
ASK, FSK, 2-PSK	Bit	1	S	S
4-PSK, 4-QAM	Dibit	2	S	2 S
8-PSK, 8-QAM	Tribit	3	S	3 <i>S</i>
16-QAM	Quadbit	4	S	4 S
32-QAM	Pentabit	5	S	5 S
64-QAM	Hexabit	6	S	6 S
128-QAM	Septabit	7	S	7 <i>S</i>
256-QAM	Octabit	8	S	88

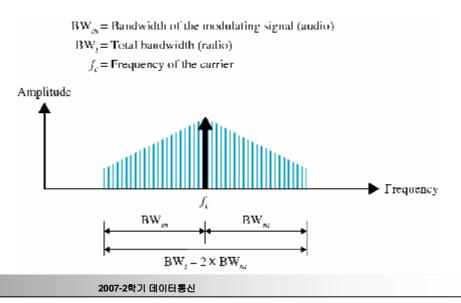
2007-2학기 데이터통신


91

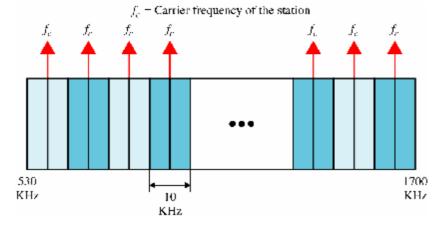

아날로그 신호 변조 (1)

u 아날로그 대 아날로그 변조

2007-2학기 데이터통신

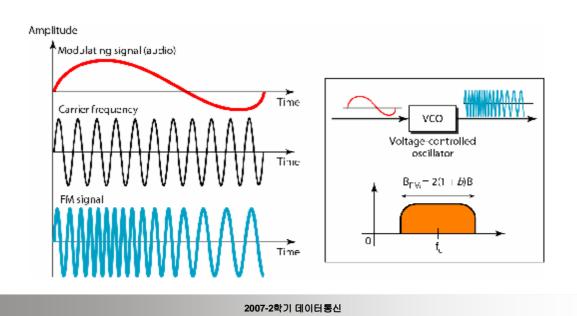


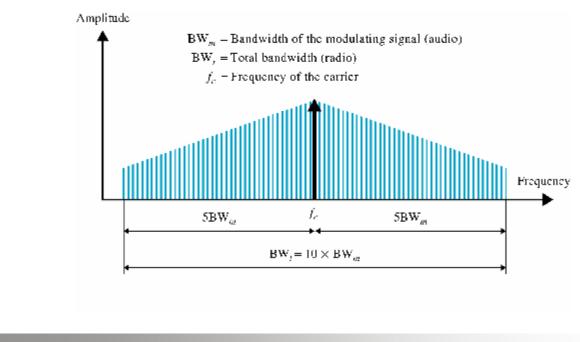
2007-2학기 데이터통신


아날로그 신호 변조 (4)

- u AM 신호의 대역폭은 변조신호의 2배
- u 5 KHz 대역의 오디오 신호에 대한 AM 전송은 최소한 10 KHz의 대역폭을 요구함
- u AM 방송국은 530 ~ 1700 Khz의 반송 주파수를 할당 받음
 - Ⅰ 반송파의 간섭을 피하기 위해 양쪽으로 각 방송국의 주파수는 10KHz 만큼 떨어져야 함

아날로그 신호 변조 (5)

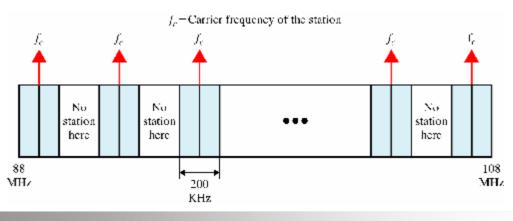

u AM 대역폭 할당


2007-2학기 데이터통신

아날로그 신호 변조 (6)

- u 주파수 변조(FM: Frequency Modulation)
 - Ⅰ 정보 신호의 진폭이 변경되면, 반송 주파수도 같은 비율로 변경

아날로그 신호 변조 (8) u FM 대역폭 I 변조 신호 대역폭의 10배와 같다 Amplitude BW_m - Bandwidth of the modulating signal (audio) BW - Total bandwidth (radio)

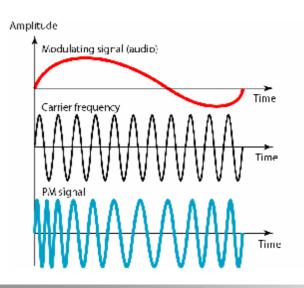


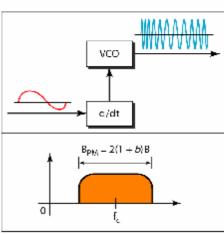
2007-2학기 데이터통신

28

아날로그 신호 변조 (9)

- u 스테레오 방송용 오디오 신호의 대역폭: 15 KHz
- u 최소 대역폭: 150 KHz
- u 각 방송국은 일반적으로 200 KHz(0.2 MHz)를 할당 받음
- u FM 방송국은 88~108 Mhz 범위의 반송 주파수를 허용
 - Ⅰ 방송국의 대역폭 중복을 막기 위해 200KHz의 간격을 유지
- u FM 대역폭 할당




2007-2학기 데이터통신

29

아날로그 신호 변조 (10)

- u 위상 변조(PM: Phase Modulation)
 - Ⅰ 반송파 신호의 위상이 변조신호의 진폭의 변화에 따라 변조
 - Ⅰ 주파수 변조의 대안으로 일부 시스템에서 사용

2007-2학기 데이터통신