

INVERTER hF-430 series

Sensorless Vector Inverter

$T F=430$

High-performance sensorless vector inverter HF Series is much easier to use.

Meeting your needs for many applications

Global standard inverter for the new era .

- Downsizing

When compared with existing models, the size is upto 37% smaller (caparison with 5.5 kW AF-3100 α)
Global standards
Conforms to overseas standards (CE/UL/cUL) (The CE Marking requires installation with special noise filter.)
Communication function
DeviceNet
\square DeviceNet is the registered mark of the Open DeviceNet Vendor Association (ODVA).
\square Easy maintenance
The detachable cooling fan, power capacitors, and control terminal block facilitate maintenance.

- Powerful operation

The sensorless control provides high starting torque, and high-performance operation.
\square The starting torque is 200% at 0.5 Hz and the torque during operation is more than 150%.
The on-line/off-line tuning identifies the motor characteristics for the best paformance.

New HF 4.30 Series

Global application

（ \in（IL）．（IL）

Standard products applicable to overseas standards

List of models

C 0 N TENTS
Standard specifications／
protective functions $\cdots 3-5$
Dimensional drawing $\cdot \cdots \cdot \cdots \cdot 6-7$
Operation 8－9
List of functions 10－15
Terminal function 16－17
Std．Connection diagram／ $\cdot 18-19$ and optionsBraking unit／braking resistor $\cdot 21-22$Peripheral equipment $\cdot \cdots \cdot$ ．23－26
Note to inverter users 27
warranty 28

Sensorless control operation allows simulta－ neous operation of two motors！！

Motor 1 and motor 2 are identical．Contact our company for details．

UP／DOWN function

In addition to the pulse output monitor，analog（current／voltage） output terminals 〈AMV／AMI terminals 〉 are provided．Analog output from the master inverter can be fed directly into the slave inverter．

〈Functions available for AMV／AMI terminals〉 Output frequency，output current，torque，output voltage，electric power，thermal load factor，etc．

Multiple analog signals permit auxiliary speed input． Effective in speed adjustment during trial operation．

Input／output signal function for a variety of applications

Type			$\begin{aligned} & \mathrm{HF} 4302 \\ & -5 \mathrm{~A} 5 \end{aligned}$	$\begin{aligned} & \text { HF4302 } \\ & -7 A 5 \end{aligned}$	$\begin{array}{c\|} \hline \text { HF4302 } \\ -011 \end{array}$	$\begin{aligned} & \text { HF4302 } \\ & -015 \end{aligned}$	$\begin{array}{l\|} \hline \text { HF4302 } \\ -022 \end{array}$	$\begin{array}{\|c\|} \hline \text { HF4302 } \\ -030 \end{array}$	$\begin{aligned} & \text { HF4302 } \\ & -037 \end{aligned}$	$\begin{aligned} & \text { HF4302 } \\ & -045 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { HF4302 } \\ -055 \end{array}$	$\begin{aligned} & \text { HF4304 } \\ & -5 A 5 \end{aligned}$	$\begin{aligned} & \text { HF4304 } \\ & -7 A 5 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { HF4304 } \\ -011 \end{array}$	$\begin{gathered} H F 4304 \\ -015 \end{gathered}$	$\begin{aligned} & \text { HF4304 } \\ & -022 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { HF4304 } \\ -030 \end{array}$	$\begin{aligned} & \hline \text { HF4304 } \\ & -037 \end{aligned}$	$\begin{aligned} & \mathrm{HF} 4304 \\ & -045 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { HF4304 } \\ -055 \end{array}$
Max. applicable motor 4P (kW)			5.5	7.5	11	15	22	30	37	45	55	5.5	7.5	11	15	22	30	37	45	55
Rated capacity (kVA)		200V/400V	8.3	11	15.9	22.1	32.9	41.9	50.2	63.0	76.2	8.3	11	15.9	22.1	33.2	40.1	51.9	62.3	76.2
		240V/480V	9.9	13.3	19.1	26.6	39.4	50.2	60.2	75.6	91.4	9.9	13.3	19.1	26.6	39.9	48.2	62.3	74.8	91.4
Rated input AC voltage			3-phase (3-wire) 200-240 V ($\pm 10 \%$), $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$									3-phase (3-wire) 380-480 V ($\pm 10 \%$), $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$								
Rated output voltage (Note 3)			3 -phase (3-wire) $200-240 \mathrm{~V}(\pm 10 \%$), (Corresponding to input voltage)									3-phase (3-wire) $380-480 \mathrm{~V}(\pm 10 \%$), (Corresponding to input voltage)								
Rated output current (A)			24	32	46	64	95	121	145	182	220	12	16	23	32	48	58	75	90	110
	Regenerative braking (Note 5)		Built-in DBTR circuit (Discharging resistor installed separately)			Regenerative braking unit \& discharging resistor installed separately						Built-in DBTR circuit (Discharging resistor installed separately			Regenerative braking unit \& discharging resistor installed separately					
	Connectable min. resistance (Ω)		17	17	17	-	-	-	-	-	-	70	50	50	-	-	-	-	-	-
Control method			Sinusoidal PWM method																	
Output frequency range (Note 4)			$0.1-400 \mathrm{~Hz}$																	
Frequency accuracy			Digital command $\pm 0.01 \%$ and analog command $\pm 0.2 \%$ with respect to max. frequency ($25 \pm 10^{\circ} \mathrm{C}$)																	
Frequency resolution			Digital setting: 0.01 Hz ; analog setting: max. frequency/4000 (VRF terminal: 12 bit/0 to +10 V; VRF2 terminal: 12 bit/-10 to +10 V)																	
Voltage/frequency characteristics			V/F control constant torque, variable torque, variable vector control, base frequency $30-400 \mathrm{~Hz}$ (Note 7)																	
Speed fluctuation			$\pm 0.5 \%$ (under sensorless vector control)																	
Overload current rating			150\%/60s, 200\%/0.5s																	
Acceleration/deceleration time			$0.01-3600.0 \mathrm{~s}$ (straight and curved line setting)																	
Starting torque			$200 \% / 0.5 \mathrm{~Hz}$ (under sensorless control); $150 \% /$ zero speed range torque																	
DC brake			Operation during starting, during deceleration by stop command, or by external input (Braking force, time, and frequency variable)																	
	Frequency setting	OPU	Setting by UP/DOWN key of digital operator																	
		External signal	DC0-+10V, -10-+10V (Input impedance 10k Ω), 4-20mA (Input impedance 100 2)																	
		External port	Setting by RS485 communication																	
	Forward/reverse RUN/STOP	OPU	RUN/STOP (Forward and reverse derection are changed by command.)																	
		External signal	Forward rotation RUN/STOP and reverse rotation command are possible when the contriol terminal block is assignal (selection of NO or NC possible), 3 -wire input possible																	
		External port	Setting by RS485 communication																	
	Multifunctional input terminal		8-terminal selection Terminals are selected from among the following for use: Reverse run command (RR), multistep speed (DFL-DFHH), jogging (JOG), external DC brake (DB), B mode (BMD), No. 2 acceleration/deceleration (AD2), free run stop (MBS), external error (ES), USP function (USP), commercial changeover (CS), sottware lock (SFT), analog input changeover (AUT), C mode (CMD), reset (RST), 3 -wire start (STA), 3 -wire holding (STP), 3 -wire forward/reverse (F/R), PID valid/invalid (PID), PID integral reset (PIDC), control gain changeover (CAS), remote operation speed up (UP), remote operation slow down (DWN), remote operation data clear (UDC), forced operation (OPE), multistep bit 1-7 (SF1-SF7), stall prevention changeover (OLR), torque limit provided/not provided(TL), torque limit changeover 1 (TRQ1), torque limit changeover 2 (TRQ2), P/PI changeover (P/PI), brake confirmation (BOK), orientation (ORT), LAD cancel (LAC), position deviation clear (PCLR), 90 -degree phase difference permit (STAT), and no allocation (NO)																	
	Thermistor input terminal		1 terminal (positive temperature coefficient/negative temperature coefficient thermistor selection possible)																	
$\begin{aligned} & \overline{0} \\ & \stackrel{\overline{0}}{0} \\ & \frac{1}{5} \\ & \text { 은 } \\ & 0 \end{aligned}$	Multifunctional output terminal		Selection of five open collector output terminals and one relay (1c contact point) terminal Driving (DRV), frequency reaching (UPF1), frequency detection 1 (UPF2), current detection 1 (OL), excessive PID deviation (OD), abnormal signal (AL), frequency detection 2 (UPF3), overtorque (OYQ), instantaneous stop signal (IP), insufficient voltage (UV), torque limit (TRQ), RUN time over (RNT), ON time over (ONT), electronic thermal alarm (THM), brake release (BRK), brake abnormal (BER), zero speed signal (ZS), excessive speed deviation (DSE), positioning complete (POK), frequency detection 3 (UPF4), frequency detection 4 (UPF5), current detection 2 (OL2), and alarm code 0-3 (ACO-AC3)																	
	Multifunctional monitor		0-10 VDC (max. 2 mA$) / 4-20 \mathrm{mADC}$ (load 250Ω or less)/0-10 VDC (PWM, max. 1.2 mA)																	
Display monitor			Output frequency, output current, torque, frequency conversion value, error history, input/output terminal state, input power, etc.																	
Other functions			V/F free setting (7 points), upper/lower frequency limiter, frequency jump, curved-line acceleration/deceleration, manual torque boost level/break point, energy-saving operation, analog meter adjustment, starting frequency, carrier frequency adjustment, electronic thermal, free setting, external start/end (frequency/percentage), analog input selection, error retry, instantaneous stop and start, various signal output, reduced voltage starting, overload limit, initialization value setting, automatic deceleration for power cut off, AVR function, and auto tuning (on-/off-line)																	
Carrier frequency range			0.5-15kHz																	
Protective function			Overcurrent, overvoltage, insufficient voltage, electronic thermal, temperature error, start-up earth current, instantaneous stop, USP error, open-phase error, braking resistor overloading, CT error, external error, communication error, option error, etc.																	
	Ambient temperature/storage temperature (Note 6)/humidity		$-10-50^{\circ} \mathrm{C} /-20-65^{\circ} \mathrm{C} / 20-90 \% \mathrm{RH}$ (Dew condensation not allowed.)																	
	Vibration (Note 1)		$5.9 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G}), 10-55 \mathrm{~Hz}$																	
	Place of use		Not exceeding 1000 above sea level (Corrosive gas and dust not allowed.)																	
$\begin{aligned} & \text { 듬 } \\ & \text { 응 } \end{aligned}$	Paint color		Blue																	
	Feedback option		PG vector control																	
	Digital input option		4-digit BCD, 16-bit binary																	
Other options			Braking resistor, AC reactor, DC reactor, various operator cables, noise filter, and regenerative braking unit																	
Approx. weight (kg)			3.5	5	5	12	12	20	30	30	50	3.5	5	5	12	12	20	30	30	50

Notes: 1. Conforms to the JIS C0911 (1984) test method.
2. The insulation distance conforms to UL and CE standards.
3. The output voltage lowers when the supply voltage lowers. (Except cases where the AVR function is selected.)
4. When the motor operation exceeds $50 / 60 \mathrm{~Hz}$, contact our company to confirm the allowable max. speed, etc.
5. Inverters are not equipped with a braking resistor. When large regenerative torque is required, use an optional braking resistor or regenerative braking unit.

6 . The storage temperature is the temperature during transportation.
7. When the base frequency is other than 60 Hz , the characteristics of the motor and speed reducer must be confirmed.

Protective Functions

Name	Description		Display of digital operator	Display of remote operator/ Copy unit ERR1***
Over-current protection	Motor is restricted and decelerates rapidly, excessive current is drawn through the inverter and there is a risk of damage. Current protection circuit operates and the inverter output is switched off.	At constant Speed	E Fin	OC. Drive
		On decelertion Speed		OC. Decel
		On acceleration Speed		OC. Accel
		Other	E E1-1	Over. C
Overload protection (Note 1)	When the Inverter detects an overload in the motor, the internal electronic thermal overload operates and the inverter output is switched off.		E EIE	Over. L
Braking resistor overload protection	When DBTR exceeds the usage ratio of the regenerative Braking resister, the over-voltage circuit operates and the inverter output is switched off.		E	OL. BRD
Over-voltage protection	When regenerative energy from the motor exceeds the maximum level, the over-voltage circuit operates and the inverter output is switched off.		E E17	Over. V
EEPROM error (Note 2)	When EEPROM in the inverter is subject to radiated noise or unusual temperature rises, the inverter output is switched off.		$E \mathrm{EI}$	EEPROM
Under-voltage	When the incoming voltage of inverter is low, the control circuit can't operate correctly. The under-voltage circuit operates and the inverter output is switched off		EIE	Under. V
CT error	When an abnormality occurs to a CT (current detector) in the inverter, the inverter output is switched off.		$E 115$	CT
CPU error	When a mistaken action causes an error to the inbuilt CPU, the inverter output is switched off.		$E \quad 11$	CPU
External trip	When a signal is given to the EXT multifunctional input terminal, the inverter output is switched off. (on external trip function select)		$E 15$	EXTERNAL
USP error	This is the error displayed when the inverter power is restored while still in the RUN mode. (Valid when the USP function is selected)		$E 1$	USP
Ground fault protection	When power is turned ON, this detects ground faults between the inverter output and the motor.		$E \quad 119$	GND. Flt.
Incoming over-voltage protection	When the incoming voltage is higher than the specification value, this detects it for 60 seconds then the over-voltage circuit operates and the inverter output is switched off.		$E \quad 15$	OV. SRC
Temporary power loss protection	When an instantaneous power failure occurs for more than 15 ms , the inverter output is switched off. Once the instantaneous power failure wait time has elapsed and the power has not been restored it is regarded as a normal power failure. However, when the operation command is still ON with restart selection the inverter will restart. So please be careful of this.		$E \quad 1 E$	Inst. P-F
Abnormal temperature	When main circuit temperature raises by stopping of cooling fan, the inverter output is switched off.		EE1	OH. FIN
Gate Allay error	Communication error between CPU and gate allay indicate		$E E$ I	GA
Open-phase protection	When an open-phase on the input supply occurs the inverter output is switched off.		EE E-1	PH. Fail
Overload protection 2	When the Inverter detects an overload in the motor (under 0.2 Hz), the inverter output is switched off.		$E E E$	Over. L2
IGBT error	When an instantaneous over-current is detected on the output the inverter output is switched off to protect the main devices.			IGBT
Thermistor error	When the Inverter detects a high resistance on the thermistor input from the motor the inverter output is switched off.		E II	TH
Abnormal brake	When inverter cannot detect switching of the brake (ON/FF) after releasing the brake, and for waiting for signal condition (b124) (When the braking control selection (b120) is enable.)		E E E	BRAKE
Option 1 error 0-9	These indicate the error of option 1. You can realize the details each instruction manual.		E69	OP1-0-9
Option 2 error 0-9	These indicate the error of option 2. You can realize the details by each instruction manual.		E970	OP2-0-9
During under-voltage waiting	When the incoming voltage of the inverter has dropped, the inverter output is switched off and the inverter waits.		----	UV. WAIT

Note 1: After a trip occurs and 10 seconds pass, restart with reset operation.
2: When EEPROM error EDS occors, confirm the setting date again.

0 .0 0 0 0 0 0 0.0 0 0 0	Code	Contents	Code	Contents
	0	Resetting	5	f0 stopping
	1	Stopping	6	Starting
	2	Decelerating	7	During DB
	3	At constant speed	8	During overload rostriction
	4	Accelerating	9	Auto tuning

Trip monitor display

Dimensional Drawing

HF4302-5A5
HF4304-5A5

HF4302-015, 022
HF4304-015, 022

HF4302-7A5, 011
HF4304-7A5, 011

Dimensional Drawing

HF4302-030
HF4304-030

HF4302-037, -045
HF4304-037, -045, -055

Operation
Operation with digital operator
The HF-430 Series is operated by the digital operator provided as standard equipment.

1. Name and details of each section of digital operator

Name	
Monitor	Displays frequency, output current, and set value
RUN lamp	ON during inverter operation
Program lamp	ON when set values of each functions are displayed on the monitor Blinking during warning (set value incomplete)
POWER lamp	Power lamp for control circuit
Alarm lamp	ON when the inverter trips
Monitor lamp	Indicates display on monitor Hz: Frequency V: Voltage A: Current kW: Electric power \%: Percentage
RUN KEY ENABLE lamp	ON when the operation command selection (A002) is set in the operator (02) position.
Run key	Used to operate the motor. Valid only when the operation command selection (A002) is in the operator (02) position. (Check that the RUN KEY ENABLE lamp is ON.)
STOP/RESET key	Used for motor stop or error reset
Function key	Used to enter the monitor mode, basic setting mode, extension function mode, or function mode
STORE key	Used to store set values (Be sure to press this key to save set values.)
UP/DOWN key	Used to change the extension function mode, function mode, or set values

Remote operator

Operation method

1. Setting method (Setting max. frequency)

－Monitor mode／basic setting mode
＂Setting possible in the change mode during operation＂is valid whenb031 is set to 10 ．

Code		Name of function	Monitor／setting range	Initial setting	Setting possible during operation	Setting possible in the change mode during operation
	d001	Output frequency monitor	$0.00-99.99 / 100.0-400.0 \mathrm{~Hz}$	－	－	－
	d002	Output current monitor	0．00－99．99／100．0－999．9A	－	－	－
	d003	Operation direction monitor	F（Forward）／0（Stop）／r（Reverse）	－	－	－
	d004	PID feedback monitor	0．00－99．99／100．0－999．9／1000．－9999．／1000－9999／「100－「999	－	－	－
	d005	Multifunctional input monitor		－	－	－
	d006	Multifunctional output monitor		－	－	－
	d007	Frequency conversion monitor	0．00－99．99／100．0－999．9／1000．－9999．／1000－3996（10000－39960）	－	－	－
	d012	Output torque monitor	－300．－＋300．	－	－	－
	d013	Output voltage monitor	0．0－600．0V	－	－	－
	d014	Input power monitor	0．0－999．9kW	－	－	－
	d016	Accumulated Run time monitor	0．00－99．99／100．0－999．9／1000．－9999．／1000－9999（10／hr unit）／${ }^{\text {r }}$／00－${ }^{\text {「999（ }}$（100／hr unit）h	－	－	－
	d017	Power ON time monitor	0．00－99．99／100．0－999．9／1000．－9999．／1000－9999（10／hr unit）／${ }^{\text {r }}$／00－${ }^{\text {「999（ }}$（100／hr unit）h	－	－	－
	d080	Number of trip time monitor	0．－9999．／1000－6553（10000－65530）times	－	－	－
	$\begin{aligned} & \text { d081 } \\ & \text { d086 } \end{aligned}$	Error history 1－6	Refer to p． 4.	－	－	－
	d090	Warning monitor	Warning code	－	－	－
오ㄷ©	F001	Output frequency setting	0.0 starting frequency to max．frequency（ B, C mode max．frequency）	0.00 Hz	\bigcirc	\bigcirc
	F002	Acceleration time setting	0．01－99．99／100．0－999．9／1000．－3600．s	30．00s	\bigcirc	\bigcirc
	F202	B mode acceleration time setting	0．01－99．99／100．0－999．9／1000．－3600．s	30．00s	\bigcirc	\bigcirc
	F302	C mode acceleration time setting	0．01－99．99／100．0－999．9／1000．－3600．s	30．00s	\bigcirc	\bigcirc
	F003	Deceleration time setting	0．01－99．99／100．0－999．9／1000．－3600．s	30．00s	\bigcirc	\bigcirc
	F203	B mode deceleration time setting	0．01－99．99／100．0－999．9／1000．－3600．s	30．00s	\bigcirc	\bigcirc
	F303	C mode deceleration time setting	0．01－99．99／100．0－999．9／1000．－3600．s	30．00s	0	0
	F004	Operation direction selection	00 （Forward）／01（Reverse）	00	\times	\times
	A－－－	Code to enter extension function A （basic function）				
흘	b－－－	Code to enter extension function B（protection function，fine adjustment function）				
さ	C－－－	Code to enter extension function C （terminal setting function）				
－	H－－－	Code to enter extension function H （motor constant setting function）				
¢	P－－－	Code to enter extension function P （option setting function）				
	U－－－	Code to enter extension function U （user block area）				

－Extension function A

Code		Name of function	Setting range	Initial setting	Setting possible during operation	Setting possible in the change mode during operation
0 .5 0 0 0 0 0 0	A001	Frequency command selection	00 （OPU volume）／01（Terminal block）／02（OPU）／03（RS485）／04（Option 1）／05（Option 2）	02	\times	\times
	A002	Operation command selection	01 （Terminal block）／02（OPU）／03（RS485）／04（Option 1）／05（Option 2）	02	\times	\times
	A003	Base frequency	30．to max．frequency Hz	$60 . \mathrm{Hz}$	\times	\times
	A203	B mode base frequency	30．to max．B mode frequency Hz	$60 . \mathrm{Hz}$	\times	\times
	A303	C mode base frequency	30．to max．C mode frequency Hz	$60 . \mathrm{Hz}$	\times	\times
	A004	Max．frequency	$30 .-400 . \mathrm{Hz}$	$60 . \mathrm{Hz}$	\times	\times
	A204	B mode max．frequency	$30 .-400 . \mathrm{Hz}$	$60 . \mathrm{Hz}$	\times	\times
	A304	C mode max．frequency	$30 .-400 . \mathrm{Hz}$	$60 . \mathrm{Hz}$	\times	\times
	A005	AUT terminal selection		00	\times	\times
	A006	VRF2 selection	74． 00 （Individua）／01（Auxiliar speed（not reversible）for VRF and IRF）02（Auxiliary speed（reversible）for VRF and IRF）	00	\times	\times
	A011	VRF start	$0.00-400.0 \mathrm{~Hz}$	0.00 Hz	\times	\bigcirc
	A012	VRF end	$0.00-400.0 \mathrm{~Hz}$	0.00 Hz	\times	\bigcirc
	A013	VRF start rate	0－100\％	0\％	\times	\bigcirc
	A014	VRF end rate	0－100\％	100\％	\times	\bigcirc
	A015	VRF start selection	00 （External starting frequency）／01（0 Hz）	01	\times	\bigcirc
	A016	VRF，IRF，VRF2 filter	1－30	8	\times	\bigcirc
	A019	Multi－speed selection	00 （Binary： 4 terminals for 16－step speed change）／01（Bit： 7 terminals for 8 －step speed change）	00	\times	\times
	A020	Multi－speed 0	0.00 starting frequency to max．frequency Hz	10.00 Hz	\bigcirc	\bigcirc
	A220	B mode Multi－speed 0	0.00 starting frequency to B mode max．frequency Hz	10.00 Hz	\bigcirc	\bigcirc
	A320	C mode Multi－speed 0	0.00 starting frequency to C mode max．frequency Hz	10.00 Hz	\bigcirc	\bigcirc
	$\begin{aligned} & \text { A021 } \\ & \text { A035 } \\ & \hline \end{aligned}$	Multi－speed frequency （1st to 15th speed）	0.00 ．starting frequency to max．frequency Hz	$\begin{aligned} & \text { A21 }=20.00 \mathrm{HZ} \\ & \text { A22 }=30.00 \mathrm{HZ} \\ & \text { A23 }=40.00 \mathrm{HZ} \\ & \text { Others }=0.00 \mathrm{HZ} \end{aligned}$	\bigcirc	\bigcirc

- List of Functions

- Extension function A

Code		Name of function	Setting range	Initial setting	Setting possible during operation	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Setting possible in the change } \\ \text { mode during operation } \end{array} \\ \hline \end{array}$
	A038	Jogging frequency setting	0.00 starting frequency to 9.99 Hz	5.0 Hz	\bigcirc	\bigcirc
	A039	Jogging selection	00 (Free run when JOG stops/invalid during operation)/01 (Deceleration stop when JOG stops/invalid during operation)/02 (DC brake when JOG stops/invalid during operation)/03 (Free run when JOG stops/valid during operation [After deceleration stop, JOG])/04 (Deceleration stop when JOG stops/valid during operation)/05 (DC brake when JOG stops/valid during operation)	01	\times	O
	A041	Torque boost selection	00 (Manual torque boost) 01/(Automatic torque boost)	00	\times	\times
	A241	B mode torque boost selection	00 (Manual torque boost) 01/(Automatic torque boost)	00	\times	\times
	A042	Manual torque boost	0.0-20.0\%	1.0\%	\bigcirc	\bigcirc
	A242	B mode manual torque boost	0.0-20.0\%	1.0\%	\bigcirc	\bigcirc
	A342	C mode manual torque boost	0.0-20.0\%	1.0\%	\bigcirc	\bigcirc
	A043	Manual torque boost point	0.0-50.0\%	0.8\%	\bigcirc	\bigcirc
	A243	B mode manual lorque bosit point	0.0-50.0\%	0.8\%	\bigcirc	\bigcirc
	A343	C mode manual torque boost point	0.0-50.0\%	0.8\%	\bigcirc	\bigcirc
	A044	Control method	00 (Constant torque characteristics)/01 (Variable torque characteristics)/02 (Free V/f	00 Note	\times	\times
	A244	B mode control method	00 (Constant torque characteristics)/01 (Variable torque characteristics)/02 (Free V/f characteristics)/03 (Sensorless control)/04 (0 speed area sensorless	00	\times	\times
	A344	C mode control method	00 (Constant torque characteristics)/01 (Variable torque characteristics)	00	\times	\times
	A045	Output voltage gain	20.0-100.0	100.0\%	\bigcirc	\bigcirc
$\begin{aligned} & 0 \\ & \stackrel{y}{0} \\ & \text { No } \\ & 0 \\ & \hline 0 \end{aligned}$	A051	DC brakeking selection	00 (Invalid)/01 (Valid)	00	\times	\bigcirc
	A052	DC brakeking frequency	$0.00-60.00 \mathrm{~Hz}$	0.50 Hz	\times	\bigcirc
	A053	DC brakeking wait time	0.0-5.0s	0.0s	\times	\bigcirc
	A054	DC braking force	0.-100.\%	0.\%	\times	\bigcirc
	A055	DC braking time	0.0-60.0s	0.0s	\times	\bigcirc
	A056	DC braking edgellevel selection	00 (Edge action)/01 (Level action)	01	\times	\bigcirc
	A057	DC braking force at start-up	0.-100.\%	0.\%	\times	\bigcirc
	A058	DC braking time at start-up	0.0-60.0s	0.0s	\times	\bigcirc
	A059	Carier frequency for DC braking	$0.5-15 \mathrm{kHz}$ (Derating provided)	5.0 kHz	\times	\times
$\text { dun! } 1 ə \nmid \text { !!!! גəMO\|/גəddn }$	A061	Frequency upper limiter	0.00 , starting frequency to max. frequency Hz	0.00 Hz	\times	\bigcirc
	A261	B mode frequency upper limiter	0.00 , starting frequency to B mode max. frequency	0.00 Hz	\times	\bigcirc
	A062	Frequency lower limiter	0.00 , starting frequency to max. frequency Hz	0.00 Hz	\times	\bigcirc
	A262	B mode trequency lower limiter	0.00 , starting frequency to B mode max. frequency	0.00 Hz	\times	\bigcirc
	A063	Jump frequency 1	$0.00-400.0 \mathrm{~Hz}$	0.00 Hz	\times	\bigcirc
	A064	Jump frequency width 1	$0.00-10.00 \mathrm{~Hz}$	0.50 Hz	\times	\bigcirc
	A065	Jump frequency 2	$0.00 .-400.0 \mathrm{~Hz}$	0.00 Hz	\times	\bigcirc
	A066	Jump frequency width 2	$0.00-10.00 \mathrm{~Hz}$	0.50 Hz	\times	\bigcirc
	A067	Jump frequency 3	$0.00-400.0 \mathrm{~Hz}$	0.00 Hz	\times	\bigcirc
	A068	Jump frequency width 3	$0.00-10.00 \mathrm{~Hz}$	0.50 Hz	\times	\bigcirc
	A069	Acceleration stop frequency	$0.00-400.0 \mathrm{~Hz}$	0.00 Hz	\times	\bigcirc
	A070	Acceleration stop time	0.0-60.0s	0.0s	\times	\bigcirc
은응음	A071	PID selection	00 (Invalid)/01 (Valid)	00	\times	\bigcirc
	A072	P gain	0.2-5.0	1.0	\bigcirc	\bigcirc
	A073	I gain	0.0-3600.0s	1.0s	\bigcirc	\bigcirc
	A074	D gain	0.0-100.0s	0.0 s	\bigcirc	\bigcirc
	A075	PID scale	0.01-99.99\%	1.0	\times	\bigcirc
	A076	PID feedback \selection	00 (Feedback: IRF)/01 (Feedback: VRF)	00	\times	\bigcirc
$\underset{\gtrless}{\mathfrak{c}}$	A081	AVR selection	00 (Normally ON)/01 (Normally OFF)/02 (OFF during deceleration)	00	\times	\times
	A082	Motor voltage selection	200/215/220/230/240, 380/400/415/440/460/480V	200/400	\times	\times
	A085	Operation mode selection	00 (Normal operation)/01 (Energy-saving operation)/02 (Fuzzy operation)	00	\times	\times
	A086		0.0-100.0.s	50.0	\bigcirc	\bigcirc
	A092	Acceleration time 2	0.01-3600.s	30.00s	\bigcirc	\bigcirc
	A292	B mode acceleration time 2	0.01-3600.s	30.00s	\bigcirc	\bigcirc
	A392	C mode acceleration time 2	0.01-3600.s	30.00s	\bigcirc	\bigcirc
	A093	Deceleration time 2	0.01-3600.s	30.00s	\bigcirc	\bigcirc
	A293	B mode deceleration time 2	0.01-3600.s	30.00 s	0	0
	A393	C mode deceleration time 2	0.01-3600.s	30.00s	0	\bigcirc
	A094	No.2accelerationdececeration selection	00 (Change with AD2 terminal)/01 (Change with setting)	00	\times	\times
	A294		00 (Change with AD2 terminal)/01 (Change with setting)	00	\times	\times
	A095	No. 2 acceleration frequency	$0.00-400.0 \mathrm{~Hz}$	0.00 Hz	\times	\times
	A295	B mode No. 2 acceleration Hequency	$0.00-400.0 \mathrm{~Hz}$	0.00 Hz	\times	\times
	A096	No. 2 deceleration frequency	$0.00-400.0 \mathrm{~Hz}$	0.00 Hz	\times	\times
	A296	B mode No. 2 deeceleration frequency	$0.00-400.0 \mathrm{~Hz}$	0.00 Hz	\times	\times
	A097	Acceleration pattern selection	00 (Straight line)/01 (S-shaped curve)/02 (U-shaped curve)/03 (Reverse U-shaped curve)	00	\times	\times
	A098	Deceleration pattern selection	00 (Straight line)/01 (S-shaped curve)/02 (U-shaped curve)/03 (Reverse U-shaped curve)	00	\times	\times

Note: V/f (for constant torque operation) is preset before shipment. Change the setting to "03" for high starting torque or high-performance operation. Contact our technical section for the details of 04 and 05 operations.

- Extension function A

Code		Name of function	Setting range	Initial setting	Setting possible during operation	Setting possible in the change mode during operation
	A101	IRF start	$0.00-400.0 \mathrm{~Hz}$	0.00 Hz	\times	\times
	A102	IRF end	$0.00-400.0 \mathrm{~Hz}$	0.00 Hz	\times	\bigcirc
	A103	IRF start rate	0.-100.\%	20.\%	\times	\bigcirc
	A104	IRF end rate	0.-100.\%	100.\%	\times	\bigcirc
	A105	IRF start pattern selection	00 (External start frequency)/01 (0 Hz)	01	\times	\bigcirc
	A111	VRF2 start	$-400 .-400 . \mathrm{Hz}$	0.00 Hz	\times	\bigcirc
	A112	VRF2 end	-400.-400. Hz	0.00 Hz	\times	\bigcirc
	A113	VRF2 start rate	-100-100\%	-100.\%	\times	\bigcirc
	A114	VRF2 end rate	-100-100\%	100.\%	\times	\bigcirc
	A131	Acceleration curve constant	01 (Small swell) to 10 (Large swell)	02	\times	\bigcirc
	A132	Deceleration curve constant	01 (Small swell) to 10 (Large swell)	02	\times	\bigcirc

-Extension function b

Code		Name of function	Setting range	Initial setting	Setting possible during operation	Setting possible in the change
	b001	Retry selection	00 (Trip)/01 ($0 \mathrm{~Hz} \mathrm{start} / 02$ (Match speed start)/03 (Trip after match speed deceleration stop)	00	\times	\bigcirc
	b002	Allowable under. voltage time for restart	0.3-1.0s	1.0s	\times	\bigcirc
	b003	Retry wait time	0.3-100.0s	1.0s	\times	\bigcirc
	b004	Momentary power loss/trip selection	00 (Invalid)/01 (Valid)/02 (Invalid during stop or deceleration to stop)	00	\times	\bigcirc
	b005	Momentary power loss retry count	00 (16 times)/01 (Limitless)	00	\times	\bigcirc
	b006	Open-phase selection	00 (Invalid)/01 (Valid)	00	\times	\bigcirc
	b007	Lower limit match frequency	$0.00-400.0 \mathrm{~Hz}$	0.00 Hz	\times	\bigcirc
	b012	Electronic thermal level	$0.20 \times$ Rated current to $1.20 \times$ Rated current A	Inverter rated current A	\times	\bigcirc
	b212	B mode electronic thermal level	$0.20 \times$ Rated current to $1.20 \times$ Rated current A	Inverter rated current A	\times	\bigcirc
	b312	C mode electronic thermal level	$0.20 \times$ Rated current to $1.20 \times$ Rated current A	Inverter rated current A	\times	\bigcirc
	b013	Electronic thermal Charateristics	00 (Reduction characteristics)/01 (Constant torque characteristics)/02 (Free setting)	00	\times	\bigcirc
	b213	B mode electronic selection	00 (Reduction characteristics)/01 (Constant torque characteristics)/02 (Free setting)	00	\times	\bigcirc
	b313	C mode electronic selection	00 (Reduction characteristics)/01 (Constant torque characteristics)/02 (Free setting)	00	\times	O
	b015	Free electronic thermal frequency 1	$0 .-400 . \mathrm{Hz}$	0.Hz	\times	\bigcirc
	b016	Free electronic thermal current 1	0.0-999.9A	0.0A	\times	\bigcirc
	b017	Free electronic themal frequency 2	0. $-400 . \mathrm{Hz}$	0. Hz	\times	\bigcirc
	b018	Free electronic thermal current 2	0.0-999.9A	0.0A	\times	\bigcirc
	b019	Freee eectronic thermal frequency 3	0. $-400 . \mathrm{Hz}$	0.Hz	\times	\bigcirc
	b020	Free electronic thermal current 3	0.0-999.9A	0.0A	\times	\bigcirc
	b021	Stall prevention selection		01	\times	\bigcirc
	b022	Stall prevention level	$0.50 \times$ Rated current to $2.00 \times$ Rated current A	Inverrer rated current $\times 1.5 \mathrm{~A}$	\times	\bigcirc
	b023	Stall prevention constant	0.10-30.00	1.00	\times	\bigcirc
	b024	Stall prevention 2 selection		03	\times	\bigcirc
	b025	Stall prevention level 2	$0.50 \times$ Rated current to $2.00 \times$ Rated current A	Inverter rated current $\times 1.5 \mathrm{~A}$	\times	\bigcirc
	b026	Stall prevention constant 2	0.10-30.00	1.00	\times	\bigcirc
	b031	Software lock selection	00 (When SFT terminal is ON, change of data other than this item impossible)/01 (When SFT terminal is ON, change in data other than this item and set frequency impossible)/02 (Change of data other than this item impossible)/03 (Change in data other than this item and set frequency impossible)/10 (Data changeable during operation mode)	03	\times	\bigcirc
$\begin{aligned} & \stackrel{\varrho}{む} \\ & \stackrel{y}{ \pm} \end{aligned}$	b034	Run time/ power ON time level	0.-6553 ($\times 10 \mathrm{~h}$ unit)	0 ($\times 10 \mathrm{~h}$)	\times	\bigcirc
	b035	Operation direction restrict	00 (Forward/reverse valid)/01 (Only forward valid)/02 (Only reverse valid)	00	\times	\times
	b036	Reduced voltage starting selection	00 (Short reduced voltage starting time) to 06 (Long reduced voltage starting time)	06	\times	\bigcirc
	b037	Display selection	00 (Indication of all items)/01 (Individual indication of function)/02 (User setting, indication of this item)	00	\times	\bigcirc
	b040	Torque limit selection	00 (4-quadrant)/01 (Terminal)/02 (Analog VRF2 input)/03 (Option 1)/04 (Option 2)	00	\times	\bigcirc
	b041	Torque limit ${ }^{1}$. (Forward running	0.-200.\%, no (Torque limiter invalid)	150.\%	\times	\bigcirc
	b042	Toraue limit 2 eneration (Reeverse	0.-200.\%, no (Torque limiter invalid)	150.\%	\times	\bigcirc
	b043		0.-200.\%, no (Torque limiter invalid)	150.\%	\times	\bigcirc
	b044	Torque limit 4	0.-200.\%, no (Torque limiter invalid)	150.\%	\times	\bigcirc
	b045	Torque LADSTOP selection	00 (Invalid)/01 (Valid)	00	\times	\bigcirc
	b046	Reverse run prevention selection	00 (Invalid)/01 (Valid)	00	\times	\bigcirc
	b050	Instantaneous stop non-stop selection	00 (Invalid)/01 (Valid)	00	\times	\times
	b051	Instantaneous stop non-stop start voltage	0.0-999.9V	0.0 V	\times	\times
	b052	Instantaneous stopsor	0.0-999.9V	0.0 V	\times	\times
	b053	Instantaneous stop non-stop deceleration	0.01-99.99/100.0-999.9/1000.-3600s	1.00s	\times	\times
	b054	Instantaneous stop	$0.00-10.00 \mathrm{~Hz}$	0.00 Hz	\times	\times
	b080	AMV adjustment	0-255	180	\bigcirc	\bigcirc
	b081	FRQ adjustment	0-255	60	\bigcirc	\bigcirc
	b082	Starting frequency	$0.10-9.99 \mathrm{~Hz}$	0.50 Hz	\times	\bigcirc
	b083	Carrier frequency	$0.5-15.0 \mathrm{kHz}$ (Derating provided)	5.0 kHz	\times	\times
	b084	Initialization selection	00 (Error history clear)/01 (Data initialization)/02 (Error history clear + Data initialization)	00	\times	\times

－Extension function b

Code		Name of function	Setting range	Initial setting	Setting possible during operation	Setting posstibl in the change
$\begin{aligned} & \stackrel{\varrho}{0} \\ & \stackrel{む}{0} \end{aligned}$	b085	Initialization data selection	00 （Domestic）	00		\times
	b086	Frequency conversion factor	0．1－99．9	1.0	\bigcirc	\bigcirc
	b087	STOP／RESET key selection	00 （Valid during external operation）／01（Invalid during external operation）	00		\bigcirc
	b088	Free run stop selection	00 （0Hz start）／01（Match frequency start）	00		\bigcirc
	b090	Regenerative braking usage raio	000．0－100．0\％	0．0\％		\bigcirc
	b091	Operation during stop selection	00 （Deceleration）／01（Free run stop）	00		\times
	b092	Cooling fan operation selection	00 （Normally）／01（During operation only（incl． 5 minutes after stop））	00		\times
	b095	DBTR selection	00 （Invalid）／01（Valid 〈Invalid during stop）／02（Valid 〈valid during stop also〉）	00		\bigcirc
	b096	DBTR ON level	330－380／660－760V	360／720V		\bigcirc
	b098	Thermistor selection	00 （Invalid）／01（PTC valid）／02（NTC valid）	00		\bigcirc
	b099	Thermistor error level	0．0－9999．Ω	3000Ω		\bigcirc
	b100	Free V／f frequency 1	0．$-400 . \mathrm{Hz}$	0．Hz		\times
	b101	Free V／f voltage 1	$0.0-800.0 \mathrm{~V}$	0．0V		\times
	b102	Free V／f frequency 2	0．$-400 . \mathrm{Hz}$	$0 . \mathrm{Hz}$		\times
	b103	Free V／f voltage 2	$0.0-800.0 \mathrm{~V}$	0.0 V		\times
	b104	Free V／f frequency 3	0．$-400 . \mathrm{Hz}$	0．Hz		\times
	b105	Free V／f voltage 3	$0.0-800.0 \mathrm{~V}$	0.0 V		\times
	b106	Free V／f frequency 4	0．$-400 . \mathrm{Hz}$	0．Hz		\times
	b107	Free V／f voltage 4	$0.0-800.0 \mathrm{~V}$	0.0 V		\times
	b108	Free V／f frequency 5	0．$-400 . \mathrm{Hz}$	$0 . \mathrm{Hz}$		\times
	b109	Free V／f voltage 5	$0.0-800.0 \mathrm{~V}$	0．0V		\times
	b110	Free V／f frequency 6	0．$-400 . \mathrm{Hz}$	$0 . \mathrm{Hz}$		\times
	b111	Free V／f voltage 6	$0.0-800.0 \mathrm{~V}$	0.0 V		\times
	b112	Free V／f frequency 7	0．$-400 . \mathrm{Hz}$	0．Hz		\times
	b113	Free V／f voltage 7	0．0－800．0V	0.0 V		\times
	b120	Brake control selection	00 （Invalid）／01（Valid）	00		\bigcirc
	b121	Establishment waiting time	0．00－5．00s	0．00s		\bigcirc
	b122	Acceleration waiting time	0．00－5．00s	0．00s		\bigcirc
	b123	Stop waiting time	0．00－5．00s	0．00s		\bigcirc
	b124	Brake confirmation wating time	0．00－5．00s	0．00s		\bigcirc
	b125	Brake release frequency setting	0．00－99．99／100．0－400．0Hz	0.00 Hz		\bigcirc
	b126	Brake release current setting	$0.50 \times$ Rated current to $2.00 \times$ Rated current A	Inverter rated current A		\bigcirc

－Extension function C

Code		Name of function	Setting range	Initial setting	Setting possible during operation	Setting possible in the change mode during operation
Multifunctional input terminal	C001	Mutituncional inotitemina AST selection	01 （RR：Reverse rotation）／02（DFL：Multistep speed 1）／03（DFM：Multistep speed 2）／04（DFH：Multistep speed 3）／05 （DFHH：Multistep speed 4）／06（JOG：Jogging）／07（DB：External DC brake）／08（BMD：B mode）／09（AD2：No． 2 acceleration／deceleration）／11（MBS：Free run）／12（ES：External error）／13（USP：Power recovery restart prevention function）／14（CS：Commercial power changeover）／15（SFT：Software lock）／16（AUT：Analog input changeover）／17 （CMD：C mode）／18（RST：Reset）／20（STA：3－wire start）／21（STP： 3 －wire holding）／22（F／R： 3 －wire forward／reverse）／23 （PID：PID valid／invalid）／24（PIDC：PID integral reset）／26（CAS：Control gain changeover）／27（UP：Remote control speed up）／28（DWN：Remote control speed down）／29（UDC：Remote control data clear）／31（OPE：Forced operation）／32（SF1： Multistep speed bit 1）／33（SF2：Multistep speed bit 2）／34（SF3：Multistep speed bit 3）／35（SF4：Multistep speed bit 4）／36 （SF5：Multistep speed bit 5）／37（SF6：Multistep speed bit 6）／38（SF7：Multistep speed bit 7）／39（OLR：Stall prevention changeover）／40（TL：Torque limit provided／not provided）／41（TRQ1：Torque limit changeover 1）／42（TRQ2：Torque limit changeover 2）／43（PPI：P／PI changeover）／44（BOK：Brake confirmation）／45（ORT：Orientation）／46（LAC：LAD cancel）／47 （PCLR：Position deviation clear）／48（STAT：90－degree phase difference permit）／255（NO：№ allocation）	18	\times	\bigcirc
	C002	Mutituctiona inputieminal ESselection		12	\times	\bigcirc
	C003	Mutituncional inputemmal JOG selection		06	\times	\bigcirc
	C004	Mutituncional inputeminad MSS selction		11	\times	\bigcirc
	C005	Mutituctional input teminal AD2 selecion		09	\times	\bigcirc
	C006	Mutituncional inputeminad DFIU selection		03	\times	\bigcirc
	C007	Mutiunctional inutitemina OFFLSelection		02	\times	\bigcirc
	C008	Mutituctiona inout teminal RR selecion		01	\times	\bigcirc
Multifunctional output terminal	C011	Multifunctional input RST $\mathrm{A} / \mathrm{B}(\mathrm{NO} / \mathrm{NC})$ selection	00 （NO）／01（NC）	00	\times	\bigcirc
	C012	Multifunctional input ES $\mathrm{A} / \mathrm{B}(\mathrm{NO} / \mathrm{NC})$ selection	00 （NO）／01（NC）	00	\times	\bigcirc
	C013	Multifunctional input JOG $A / B(N O / N C)$ selection	00 （NO）／01（NC）	00	\times	\bigcirc
	C014	Multifunctional input MBS $\mathrm{A} / \mathrm{B}(\mathrm{NO} / \mathrm{NC})$ selection	00 （NO）／01（NC）	00	\times	\bigcirc
	C015	Multifunctional input AD2 A／B（NO／NC）selection	00 （NO）／01（NC）	00	\times	\bigcirc
	C016	Multifunctional input DFM $\mathrm{A} / \mathrm{B}(\mathrm{NO} / \mathrm{NC})$ selection	00 （NO）／01（NC）	00	\times	\bigcirc
	C017	Multifunctional input DFL $\mathrm{A} / \mathrm{B}(\mathrm{NO} / \mathrm{NC})$ selection	00 （NO）／01（NC）	00	\times	\bigcirc
	C018	Multifunctional input FR $\mathrm{A} / \mathrm{B}(\mathrm{NO} / \mathrm{NC})$ selection	00 （NO）／01（NC）	00	\times	\bigcirc
	C019	FR A／B（ $\mathrm{NO} / \mathrm{NC}$ ）selection	00 （NO）／01（NC）	00	\times	\bigcirc
	C021	Multifunctional output	00 （DRV：Driving）／01（UPF1：Frequency arrival）／02（UPF2：Frequency detection 1）／03（OL：Current detection 1）／04（OD：PID deviation excessive）／05（AL：Alarm signal） 06 （UPF3：Frequency detection 2）／07（OTQ： Torque detection 1）／08（IP：Instantaneous stopping）／09（UV：Insufficient voltage）／10（TRQ：Torque liniting）／11 （RNT：RUN time over）／12（ONT：Power ON time over）／13（THM：Electronic thermal alarm）／19（BRK：Brake release）／20（BER：Brake error）／21（ZS： 0 speed signal）／22（DSE：Speed deviation maximum）／23（POK： Positioning complete）／24（UPF4：Frequency detection 3）／25（UPF5：Frequency detection 4）／26（OL2：Current detection 2）（When the alarm code output is selected by C062，ACO－AC2 or ACO－AC3（Can：Alarm code output）is forcibly set for the multifunctional output terminals UPF－X2 or UPF－X3．）	01	\times	\bigcirc
	C022	Multifunctional output terminal DRV selection		00	\times	\bigcirc
	C023	Multifunctional output terminal X1 selection		13	\times	\bigcirc
	C024	Multifunctional output terminal X2 selection		07	\times	\bigcirc
	C025	Multifunctional output terminal X3 selection		08	\times	\bigcirc
	C026	Alarm relay output terminal		05	\times	\bigcirc
	C027	FRQ selection	00 （Output frequency）／01（Output current）／02（Output torque）／03（Digital output frequency）／04 （Output voltage）／05（Input power）／06（Thermal load factor）／07（LAD frequency） （03 can be set only for C027．）	00	\times	\bigcirc
	C028	AMV selection			\times	\bigcirc
	C029	AMI selection			\times	\bigcirc

- Extension function C

Code		Name of function	Setting range	Initial setting	Setting possible during operation	Setting possible in the change mode during operation
	C031	Multifunctional output UPF A/B (NO/NVC) sekection	00 (NO) /01 (NC)	00	\times	\bigcirc
	C032	Multifunctional output DRV A/B (NO/NVC) sekection	00 (NO) /01 (NC)	00	\times	\bigcirc
	C033	Multifunctional output X1 A/B (NO/NVC) sekection	00 (NO) /01 (NC)	00	\times	\bigcirc
	C034	Multifunctional output X2	00 (NO) /01 (NC)	00	\times	\bigcirc
	C035	Multifunctional output X3 A/B (NO/NVC) sekection	00 (NO) /01 (NC)	00	\times	\bigcirc
	C036	Abnormal contact point output AB (NO/NVC) sekection	00 (NO) /01 (NC)	01	\times	\bigcirc
	C040	Current detection signal output mode selection	00 (During acceleration/deceleration/at constant speed)/01 (At constant speed)	00	\times	\bigcirc
	C041	Current detection level	$0.00 \times$ Rated current to $2.00 \times$ Rated current A	Inverter rated current A	\times	\bigcirc
	C042	Acceleration reaching frequency	$0.00-400.0 \mathrm{~Hz}$	0.00 Hz	\times	\bigcirc
	C043	Deceleration reaching frequency	$0.00-400.0 \mathrm{~Hz}$	0.00 Hz	\times	\bigcirc
	C044	PID deviation level	0.0-100.0\%	3.0\%	\times	\bigcirc
	C045	Reaching treuuncry 2 duringacaeeraion	0.00-99.99/100.0-400.0Hz	0.00	\times	\bigcirc
	C046	Reaching teeuencry 2 duringacaeleation	$0.00-99.99 / 100.0-400.0 \mathrm{~Hz}$	0.00	\times	\bigcirc
	C055	Overorque (fowad power runing) \|evel	0.-200.\%	100.	\times	\bigcirc
	C056	Overtovie (revesse regeneraioion) \|evel	0.-200.\%	100.	\times	\bigcirc
	C057	Overorque (feress epover runing) \|evel	0.-200.\%	100.	\times	\bigcirc
	C058	Overtowe (Iowad regeneraion) level	0.-200.\%	100.	\times	\bigcirc
	C061	Electronic thermal warning level	0.-100.\%	85\%	\times	\bigcirc
	C062	Alarm code selection	00 (Invalid)/01 (3 bits)/02 (4 bits)	00	\times	\bigcirc
	C063	Zero speed detection level	$0.00-99.99 / 100.0 \mathrm{~Hz}$	0.00 Hz	\times	\bigcirc
	C070	Data command selection	02 (OPU)/03 (RS485)/04 (Option 1)/05 (Option 2)	02	\times	\times
	C071	Communication transmission speed	02 (Loop back test)/03 (2400bps)/04 (4800bps)/05 (9600bps)/06 (19200bps)	04	\times	\bigcirc
	C072	Communication station No.	1.-32.	1.	\times	\bigcirc
	C073	Communication bit length	7 (7 bits)/8 (8 bits)	7	\times	\bigcirc
	C074	Communication parity	00 (No parity)/01 (Even-parity)/02 (Odd-parity)	00	\times	\bigcirc
	C075	Communication stop bit	1 (1 bit)/2 (2 bits)	1	\times	\bigcirc
	C078	Communication waiting time	0.0-1000.ms	0.0 ms	\times	\bigcirc
	C 081	VRF adjustment	0-6553 (65535)	Set for shipment	\bigcirc	\bigcirc
	C082	IRF adjustment	0-6553 (65535)	Set for shipment	\bigcirc	\bigcirc
	C083	VRF2 adjustment	0-6553 (65535)	Set for shipment	\bigcirc	\bigcirc
	C085	Thermistor adjustment	0.0-1000.	105.0	\bigcirc	\bigcirc
	C086	AMV offset adjustment	0.0-10.0V	0.0 V	\bigcirc	\bigcirc
	C 087	AMI adjustment	0-255	80	\bigcirc	\bigcirc
	C 088	AMI offset adjustment	0-20.0mA	Set for shipment mA	\bigcirc	\bigcirc
$\begin{aligned} & \stackrel{\varrho}{0} \\ & \pm \end{aligned}$	C091	Debug mode selection	00 (No indication)/01 (Indication)	00	\times	\bigcirc
	C101	UP/DWN selection	00 (Frequency data not stored)/01 (Frequency data stored)	00	\times	\bigcirc
	C102	Reset selection	00 (Trip cancel at ON)/01 (Trip cancel at OFF)/02 (Valid only during tripping 〈Cancelled at ON》)	00	\times	\bigcirc
	C103	Reset match frequency selection	00 (0Hz start)/01 (Mach frequency start)	00	\times	\bigcirc
	C111	Current detection 2 level	$0.00 \times$ Rated current to $2.00 \times$ Rated current	Inverter rated current	\times	\bigcirc
	C121	VRF zero adjustment	0-6553 (65535)	Set for shipment	\bigcirc	\bigcirc
	C122	IRF zero adjustment	0-6553 (65535)	Set for shipment	\bigcirc	\bigcirc
	C123	VRF2 zero adjustment	0-6553 (65535)	Set for shipment	\bigcirc	\bigcirc

-Extension function H

Code		Name of function	Setting range	Initial setting	Setting possible during operation	Setting possible in the change mode during operation
	H001	Auto tuning selection	00 (Invalid)/01 (No rotation)/02 (Rotation)	00	\times	\times
	H002	Motor type setting		00	\times	\times
	H202	B mode motor type selection		00	\times	\times
	H003	Motor capacity setting	0.20-75.0 (kW)	Set for shipment	\times	\times
	H203	B mode motor capacity setting	0.20-75.0 (kW)	Set for shipment	\times	\times
	H004	Number of motor poles setting	2/4/6/8	4	\times	\times
	H204	B mode unnber of moior poles seting	2/4/6/8	4	\times	\times
	H005	Speed response	0.001-65.53	1.590	\bigcirc	\bigcirc
	H205	B mode speed response	0.001-65.53	1.590	\bigcirc	\bigcirc
	H006	Stabilization constant	0-255	100	\bigcirc	O
	H206	B mode stabilization constant	0-255	100	\bigcirc	\bigcirc
	H306	C mode stabilization constant	0-255	100	\bigcirc	\bigcirc
	H020	Motor primary resistance R1	0.000-9.999/10.00-65.53	By capacity	\times	\times
	H220	B mode motor pimay resisiance R1	0.000-9.999/10.00-65.53	By capacity	\times	\times
	H021	Motor seconday resistance R2	0.000-9.999/10.00-65.53	By capacity	\times	\times

- Extension function H

Code		Name of function	Setting range	Initial setting	Setting possible during operation	Setting possible in the change mode during operation
6u!nəs u!̣e6/_ue\|suoo дolow	H221	B mode moior seconday resitance R2	0.000-9.999/10.00-65.53	By capacity	\times	\times
	H022	Motor inductance L	0.00-9.99/100.-655.3	By capacity	\times	\times
	H222	B mode motor inductance L	0.00-9.99/100.0-655.3	By capacity	\times	\times
	H023	Motor no-load current 10	0.00-9.99/100.0-655.3	By capacity	\times	\times
	H223	B mode motor no-load current 10	0.00-.99/100.0-655.3	By capacity	\times	\times
	H024	Motor inertial moment J	1.0-999.9/1000.-9999.	By capacity	\times	\times
	H224	B mode avio turing motorinductance L	1.0-999.9/1000.-9999.	By capacity	\times	\times
	H030	Auto tuning motor primary resistance R1	0.000-9.999/10.00-65.53	By capacity	\times	\times
	H230	B mode auto tuning motor secondary resistance R2	0.000-9.999/10.00-65.53	By capacity	\times	\times
	H031	Auto tuning motor secondary resistance R2	0.000-9.999/10.00-65.53	Dilters according to capacity	\times	\times
	H231	B mode auto tuning motor secondary resistance R2	0.000-9.999/10.00-65.53	Difiers according to capaaity	\times	\times
	H032	Auto tuning motor inductance L	0.00-9.99/100.0-655.3	Difiers accooring to capacity	\times	\times
	H232	B mode avio turing motorinductance L	0.00-9.99/100.0-655.3	Difiers according to capacaity	\times	\times
	H033	B mode auto tuning motor no-load current IO	0.00-9.99/100.0-655.3	Diliers according to capacity	\times	\times
	H233	B mode auto tuning motor no-load current 10	0.00-9.99/100.0-655.3	Diliers according to capacity	\times	\times
	H034	Auto tuning motor inductance L	1.0-999.9/1000.	Difiers according to capacity	\times	\times
	H234	B mode avio turing motorindutarace L	1.0-999.9/1000.	Dilfers according to capacity	\times	\times
	H050	Pl proportional gain	0.0-99.9/100.0-999.9/1000.\%	100.0\%	\bigcirc	\bigcirc
	H250	B mode Pl proportional gain	0.0-99.9/100.0-999.9/1000.\%	100.0\%	\bigcirc	\bigcirc
	H051	Pl integral gain	0.0-99.9/100.0-999.9/1000.\%	100.0\%	\bigcirc	\bigcirc
	H251	B mode Pl integral gain	0.0-99.9/100.0-999.9/1000.\%	100.0\%	\bigcirc	\bigcirc
	H052	P proportional gain	0.00-10.00	1.00	\bigcirc	\bigcirc
	H252	B mode P proportional gain	0.00-10.00	1.00	\bigcirc	\bigcirc
	H060	OHz SLV limiter	0.0-100.0\%	100.0\%	\bigcirc	\bigcirc
	H260	B mode zero sensorless limit	0.0-100.0\%	100.0\%	\bigcirc	\bigcirc
	H070	For Pl proporional gain swicthing	0.0-99.9/100.0-999.9/1000.\%	100.0\%	\bigcirc	\bigcirc
	H071	For Pl integral gain swiching	0.0-99.9/100.0-999.9/1000.\%	100.0\%	\bigcirc	\bigcirc
	H072	For P propotional gain swicthing	0.00-10.00	1.00	\bigcirc	\bigcirc

- Extension function P

Code		Name of function	Setting range	Initial setting	Setting possible during operation	Setting possible in the change mode during operation
$\begin{aligned} & \text { n } \\ & \text { 응 } \\ & \text { ㅇ } \\ & \text { ㄴ․ } \end{aligned}$	P001	Operation for opion 1 eroro s seccion	00 (Abnormal)/01 (Continuation of operation)	00	\times	\bigcirc
	P002	Operation for opion 2error secection	PG feedback option selection	00	\times	\bigcirc
	P010	PG feedback option selection	00 (Not provided)/01 (Provided)	00	\times	\times
	P011	Number of PG pulses setting	128-65000 pulses	1024 pulses	\times	\times
	P012	Control mode selection	00 (ASR mode)/01 (APR mode)	00	\times	\times
	P013	Pulse train mode selection	00/01/02	00	\times	\times
	P014	Orientaion stop position setting	0.-4095.pulses	$0 . \mathrm{pulses}$	\times	\bigcirc
	P015	Orientation speed setting	0.00-99.99/100.0-120.0Hz	5.00 Hz	\times	\bigcirc
	P016	Orientation direction setting	00 (Forward direction)/01 (Reverse direction)	00	\times	\times
	P017	Oiendation completion range setting	0.-9999./1000 (10000) pulses	5.pulses	\times	\bigcirc
	P018	Oienitioion ompletion deday ine sesting	0.00-9.99s	0.00s	\times	\bigcirc
	P019	Eectronic cear setingososition secection	00 (Position feedback side)/01 (Position command side)	00	\times	\bigcirc
	P020	Electronic cear alio numeraior seting	1.-9999.	1.	\times	\bigcirc
	P021	Electronic cear alioderononinaor seting	1.-9999.	1.	\times	\bigcirc
	P022	Position feed forward gain setting	0.00-99.99/100.0-655.3	0.00	\times	\bigcirc
	P023	Position loop gain setting	0.00-99.99/100.0	0.50	\times	\bigcirc
	P025	Seconday essistarecocrection selection	00 (Not provided)/01 (Provided)	00	\times	\bigcirc
	P026	Overspeded eror delecioion level seting	0.0-150.0\%	135\%	\times	\bigcirc
	P027	Speed deviation error detection level setting	0.00-99.99/120.0Hz	7.5 Hz	\times	\bigcirc
	P031	Option acceleration/deceleration time input selection	00 (Main unit)/01 (Option 1)/02 (Option 2)	00	\times	\times
	P032	Opioin position command inut selection	00 (Main unit)/01 (Option 1)/02 (Option 2)	00	\times	\times

- Extension function U

Code		Name of function	Setting range	Initial setting	Setting possible during operation	Setting possible in the change mode during operation
	U001 1 U012	User 1-12 selection	no/d001-P032	no	\times	\times

Terminal function

Main circuit terminal

Terminal function

Terminal code	Terminal name	Function
R,S,T	Main power input terminal	Connect to the input power.
$\mathrm{U}, \mathrm{V}, \mathrm{W}$	Inverter output terminal	Connect to 3-phase motor.
P, PR	External braking resistor connection terminal	Connect to braking resistor (option). (For 11 kW or less)
P, N,	External braking unit connection terminal	Connect to a braking unit (option).
$\mathrm{P} 1, \mathrm{P}$	DC reactor connection terminal	Connect to a DC reactor (DCL).
$\mathrm{E}(\mathrm{G}) \oplus$	Grounding wire connection terminal	Ground (Ground the equipment for prevention of electric shock and noise reduction.)
$\mathrm{r} 1, \mathrm{t} 1$	Control power input terminal	Connect to an input power supply.

Terminal arrangement

- HF4302-5A5 HF4304-5A5

		R (L1)	S	$\begin{gathered} \mathrm{T} \\ \text { (L3) } \end{gathered}$	$\underset{(\mathrm{T} 1)}{\mathrm{U}}$	$\underset{(\mathrm{T} 2)}{\mathrm{V}}$	W (T3)
r1	t1	P1	P $(+)$	$\begin{aligned} & \mathrm{N} \\ & (-) \end{aligned}$	PR	$\begin{gathered} \underset{\mathrm{E}(\mathrm{G})}{(}) \end{gathered}$	$\begin{gathered} \Theta(\theta) \\ \mathrm{E}(\mathrm{G}) \end{gathered}$

- HF4302-015, 030-037
HF4304-015-055

$\begin{gathered} \ominus \\ \mathrm{E}(\mathrm{G}) \end{gathered}$	$\begin{gathered} \mathrm{R} \\ (\mathrm{~L} 1) \end{gathered}$	$\underset{(\mathrm{L} 2)}{\mathrm{S}}$	$\begin{gathered} \mathrm{T} \\ (\mathrm{~L} 3) \end{gathered}$	P1	$\begin{gathered} \mathrm{P} \\ (+) \end{gathered}$	$\begin{aligned} & \mathrm{N} \\ & (-) \end{aligned}$	$\underset{(\mathrm{T} 1)}{\mathrm{U}}$	V (T2)	$\begin{gathered} \text { W } \\ \text { (T3) } \end{gathered}$	$\begin{gathered} \ominus \\ \mathrm{E}(\mathrm{G}) \end{gathered}$

HF4302-7A5-011
HF4304-7A5-011

R	$\underset{(\mathrm{L} 2)}{\mathrm{S}}$	$\begin{gathered} \hline \mathrm{T} \\ (\mathrm{~L} 3) \end{gathered}$	$\underset{(\mathrm{T} 1)}{\mathrm{U}}$	$\begin{gathered} \hline \mathrm{V} \\ \text { (T2) } \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \text { (T3) } \end{gathered}$		
P1	$\begin{gathered} \hline P \\ (+) \end{gathered}$	$\begin{aligned} & \mathrm{N} \\ & (-) \end{aligned}$	PR	$\underset{\mathrm{E}(\mathrm{G})}{\underset{(}{\boldsymbol{\theta}})}$	$\underset{\mathrm{E}(\mathrm{G})}{\stackrel{(}{7})}$	r1	t1

- HF4302-022, 045

R	S	T	P 1	P	N	U	V	W
$(\mathrm{L} 1)$	$(\mathrm{L} 1)$	$(\mathrm{L} 3)$	P	$(+)$	$(-)$	$(\mathrm{T} 1)$	$(\mathrm{T} 2)$	$(\mathrm{T} 3)$

\ominus
$\mathrm{E}(\mathrm{G})$

$\stackrel{(}{\mathrm{E}(\mathrm{G})}$

Terminal thread diameter/terminal width

Model	Terminal thread diameter	Thread width (mm)
HF 4302, HF 4304-5A5	M5	13
HF 4302, HF 4304-7A5	M5	17.5
HF 4302, HF 4304-011	M6	17.5
HF 4302-015, HF 4304-015-037	M6	18
HF 4302-022-037, HF 4304-045-055	M8	23
HF 4302-045	M10	35
t1 terminal (all models)	M4	9

Control circuit terminal

Terminal arrangement

+V		VRF2	AMV	FRQ	TH	FR	RR	BC	AD2	JOG	RST	X2	X1	UPF	FB
COM	VRF	IRF	AMI	P24	PCS	BC	DFL	DFM	MBS	ES	X3	OM	DRV	FC	FA

Control circuit terminal

Terminal function

			Terminal code	Terminal name	Setting range	Electric characteristics
$\begin{aligned} & \frac{8}{\frac{0}{\pi}} \\ & \frac{\pi}{4} \end{aligned}$	¢000	${ }_{3}^{ \pm}$	COM	Analog power common	Common for analog input (VRF, VRF2, IRF) and analog output (AMV, AMI). *Do not ground to earth.	-
			+V	Power for frequency setting	10 VDC power for VRF terminal	Allowable load current: 20 mA or less
			VRF	Frequency command terminal (Voltage)	Max. frequency at 10 VDC when $0-10$ VDC is input. Set A014 if max. frequency corresponds to voltage below 10 VDC.	Input impedance: 10Ω Allowable input voltage range: -0.3 to +12 VDC
			VRF2	Frequency command auxiliary terminal (Voltage)	VRF2 is a ± 10 VDC signal. Use VRF2 for either an auxiliary signal added to VRF or IRF or as the main frequency reference. The that codes the direction with the voltage polarity.	Input impedance: 10Ω Allowable input voltage range: 0 to ± 12 VDC
			IRF	Frequency command terminal (Current)	Max. frequency at 20 mADC when 4-20 mADC is input. The IRF signal is valid only when the AUT terminal is ON.	Input impedance: 100Ω Allowable input current range: 0 to 24 mADC
			AMV	Analog voltage output monitor	Select one of the monitor items for either output - output frequency, output current, torque, output voltage, input power, and electronic thermal load factor.	0-10 VDC voltage output Allowable load current: 2 mA or less
			AMI	Analog current output monitor		4-20 mADC current output Allowable load impedance: 250Ω or less
$\begin{aligned} & \overline{\widetilde{0}} \\ & \hline \overline{0} \end{aligned}$			FRQ	Digital monitor (Voltage)	[0-10 VDC voltage output (PWM output method)] Select and input one of the monitor items - output frequency, output current, torque, output voltage, input power, and electronic thermal load factor. [Digital pulse output (Pulse voltage 0/10 VDC)] Use this method to output a pulse signal with a frequency that scales to the monitor item (duty 50\%).	Allowable load current: 1.2 mA or less Digital output frequency range: $0-3.6 \mathrm{kHz}$ $0-3.6 \mathrm{kHz}$
	$\begin{aligned} & \text { ò } \\ & \overbrace{0} \end{aligned}$		P24	Power terminal for interface	24 VDC power for contact input Contact input common when sourcing output logic is selected	Allowable load current: 100 mA or less
			BC	Power common terminal for interface	Common terminal for power P24 terminal, thermistor input TH terminal, and digital monitor FRQ terminal for interface. Contact input common when the sinking output logic is selected. *Do not ground to earth.	-
			FR	Forward operation command terminal	FR signal ON for forward run command, and OFF for stop command	[Condition for contact input ON] Votage between each input and PCS: 18 VDC or more [Condition for contact input OFF] Voltage between each input and PCS: 3 VDC or less Input impedance Between each input and PCS: $4.7 \mathrm{k} \Omega$ Allowable max. voltage Between each input and PCS: 27 VDC
			RST ES JOG MBS AD2 DFM DFL RR	Multifunctional input terminal	8 inputs programmable from the functions reverse rotation command, multistep speed 1-4, jogging, external DC braking, B mode, No. 2 acceleration/deceleration, free run stop, external error, USP function, commercial power changeover, software lock, analog input changeover, C mode, error reset, 3-wire activation, 3-wire holding, 3-wire forward/reverse, PID valid/invalid, PID integral reset, remote control speed up, remote control slow down, remote control data clear, multistep bit 1-7, overload limit changeover, and no allocation.	
			PCS	Common for multifunctional input terminal	The input logic type can be selected from either sinking output or sourcing output using the PCS terminal. For sinking output type input logic connect the shorting bar between P24 and PCS terminals. For sourcing output type input logic connect the shorting bar between PCS and BC and use P24 or external power to drive the inputs.	
		$\begin{aligned} & \grave{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \tilde{\pi} \\ & \ddot{0} \\ & \tilde{0} \end{aligned}$	UPF DRV X1 X2 X3	Multifunctional output terminal	The 5 output terminals available are programmable for various functions. When alarm code is selected with C062, the output terminals UPF-X2 (3-bits) or the output terminals UPF-X3 terminals (4-bits) generate alarm codes. The output terminals and OM terminal are hardwired for both sourcing and sinking type output signals.	Between output terminals and OM Voltage drop of 4 V or less at ON Allowable max. voltage: 27 VDC Allowable max. current: 50 mA
			OM	Remote control for multifunctional output terminal	Common terminal for multifunctional output terminals	
$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{\pi} \\ & \frac{\pi}{4} \end{aligned}$			TH	Thermistor input terminal	When the external thermistor is connected and the temperature foult occurs, the external thermistor trips the inverter. The BC terminal is the common terminal. [Recommended thermistor characteristics] Allowable rated power: 100 mW or more, impedance during temperature error: $3 \mathrm{k} \Omega$. *Detection level of temperature error is variable within the range between 0 and 9999	
$\begin{aligned} & \overline{\widetilde{0}} \\ & \stackrel{0}{0} \end{aligned}$			$\begin{aligned} & \text { FA } \\ & \text { FB } \\ & \text { FC } \end{aligned}$	Alarm output terminal	Function of output is programmable. Output is FORM C type relay output. The default function for this output is ALARM indicating that the protection feature tripped the drive and shut down motor operation.	Max. contact capacityFB-FC 250 VAC, 2 A (resistance)/ 0.2 A (induction) FA-FC 250 VAC, 2 A (resistance)/ 0.2 A (induction) Min. contact capacity AC100V, 10 mA DC5V, 100 mA

Standard connection diagram

Applicable wiring for accessories options

Standard Accessories

Rated input voltage	Applicable motor rating	Applicable inverter model	Circuit breaker and earth leakage breaker (Made by Mitsubishi Electric)		Electromagnetic contactor [MC] (Made by Fuji Electric)	Cable size (mm^{2}) (Note)	
					Input side	Input side	Inverter output side
			No reactor		No reactor	No reactor	
$\begin{aligned} & 200 \mathrm{~V} \\ & \text { class } \end{aligned}$	5.5	HF4302-5A5	NF50, NV50	50A	SC-1N	8 (5.5)	5.5 (5.5)
	7.5	HF4302-7A5	NF100, NV100	60A	SC-2N	14 (8)	8 (8)
	11	HF4302-011	NF100, NV100	75A	SC-2SN	22 (14)	14 (14)
	15	HF4302-015	NF100, NV100	100A	SC-3N	38 (14)	22 (14)
	22	HF4302-022	NF225, NV225	175A	SC-5N	60 (22)	38 (22)
	30	HF4302-030	NF225, NV225	200A	SC-7N	38*2 (38)	60 (30)
	37	HF4302-037	NF400, NV400	250A	SC-8N	50*2 (50)	50*2 (38)
	45	HF4302-045	NF400, NV400	300A	SC-10N	60*2 (60)	38*2 (50)
	55	HF4302-055	NF400, NN400	350A	SC-11N	80*2 (38*2)	60*2 (60)
$\begin{aligned} & 400 \mathrm{~V} \\ & \text { class } \end{aligned}$	5.5	HF4304-5A5	NF30, NV30	30A	SC-5-1	5.5 (2)	3.5 (3.5)
	7.5	HF4304-7A5	NF30, NV30	30A	SC-5-1	5.5 (2)	3.5 (3.5)
	11	HF4304-011	NF50, NV50	50A	SC-1N	8 (3.5)	5.5 (3.5)
	15	HF4304-015	NF100, NV100	60A	SC-2N	14 (5.5)	8 (5.5)
	22	HF4304-022	NF100, NV100	100A	SC-2SN	30 (5.5)	14 (8)
	30	HF4304-030	NF225, NV225	125A	SC-3N	38 (14)	22 (14)
	37	HF4304-037	NF225, NV225	150A	SC-4N	60 (22)	38 (14)
	45	HF4304-045	NF225, NV225	175A	SC-5N	30*2 (30)	50 (22)
	55	HF4304-055	NF225, NV225	200A	SC-7N	38*2 (38)	60 (30)

Notes: 1. Type of cable: 600 V IV cable. 600 V crosslinked-polyethylene-insulated cable is shown in parentheses.
2. The above types may change depending on the operating environment
3. Use thicker cables when wiring distance exceeds 20 m .
4. The shown accessories are for use with SUMITOMO 3-phase, 4-pole motors.

When using an earth leakage breaker (ELB), select the breaker's trip current from the table below based on the total wire distance (ℓ) by summing the distance from the breaker to the inverter and the inverter to the motor.

ℓ	Trip current (mA)
100 m or less	30
300 m or less	100
600 m or less	200

Notes: 1. When CV wiring is used in metal conduit, the leakage current is approximately $30 \mathrm{~mA} / \mathrm{km}$.
2. Leakage current will increase eightfold with IV type cable due to higher dielectric constant. In this case, use ELB with the next higher trip rating.

Name	Function
Input AC reactor For higher harmonic control /power smoothing/power factor improvement	This is useful in suppressing harmonics induced on the power supply lines, or when the main power voltage imbalance exceeds 3%, (and power source capacity is more than 500 kVA), or to smooth out line fluctuations. It also improves the power factor.
Radio noise filter Zero-phase reactor	Electrical noise interference may occur on nearby equipment such as a radio receiver. This magenetic choke filter helps reduce radiated noise.
Input noise filter LC filter	This filter reduces the conducted noise in the power supply wiring between the inverter and the power distribution system. Connect it to the inverter primary (input side).
Input radio noise filter (XY filter)	This capacitive filter reduces radiated noise from the main power wires in the inverter input side.
DC reactor	The inductor or choke filter suppresses harmonics generated by the inverter.
Regenerative braking resistor	The regenerative braking resistor is useful for increasing the inverter's control torque for high duty-cycle (on-off) applications, and improving the decelerating capacity.
Output noise filter LC filter	This filter reduces radiated noise emitted on the inverter output cable that may interfere with radio or television reception and test equipment and sensor operation.
Radio noise filter Zero-phase reactor	Electrical noise interference may occur on nearby equipment such as a radio receiver. This magenetic choke filter helps reduce radiated noise.
Output AC reactor	Install the reactor on the output side to reduce leakage current contributed by high harmonics. Contact our company for details.

Note: Ground the LC filter according to the operation manual. Incorrect grounding will lessen the effectiveness.

Braking unit/braking resistor

Selection table

Voltage	Type of inverter	Motor rating (kW)	Braking torque 100\%							
			Operation rate : 4\%ED max. Braking time : 7 sec . max.				Operation rate : 10\%ED max. Braking time : 15 sec . max.			
			Braking unit		Braking resistor $* *$		Braking unit		Braking resistor **	
			Type	Qty	Type	Qty	Type	Qty	Type	Qty
$\begin{aligned} & 200 \mathrm{~V} \\ & \text { Class } \end{aligned}$	HF4302-5A5	5.5	-*	-	Y135AA208 (702 400W)	2P	-*	-	X435AC069 (102 750W)	2 S
	HF4302-7A5	7.5	-*	-	X435AC069 (10 2750 W)	2 S	-*	-	X435AC069 (10 2750 W)	2 S
	HF4302-011	11	-*	-	X435AC069 (10 2750 W)	2S	-*	-	X435AC094 (7ת 750W)	35
	HF4302-015	15	DU-207S	1	X435AC064 (2.5s 750W)	3 S	DU-202S	1	X435AC064 (2.58 750W)	4 S
	HF4302-022	22	DU-207S	1	X435AC054 (1.6 7 750W)	3 S	DU-204S	1	X435AC065 (1.12 750W)	6S
	HF4302-030	30	DU-208S	1	X435AC065 (1.12 750W)	4S	DU-205S	1	X435AC066 (0.6 750W)	8S
	HF4302-037	37	DU-208S	1	X435AC065 (1.12 750W)	4S	DU-203S	2	X435AC054 (1.6ת 750W)	$5 \mathrm{~S} \times 2$
	HF4302-045	45	DU-207S	2	X435AC054 (1.6 7 750W)	$3 S \times 2$	DU-204S	2	X435AC065 (1.12 750W)	$6 S \times 2$
$\begin{aligned} & 400 \mathrm{~V} \\ & \text { Class } \end{aligned}$	HF4304-5A5	5.5	-*	-	Y135AA205 (200 300 W)	2P	-*	-	Y135AA209 (250 \% 400W)	3 P
	HF4304-7A5	7.5	-*	-	Y135AA153 (30 200 W)	2S	-*	-	X435AC058 (30 750 W)	2 S
	HF4304-011	11	-*	-	X435AC058 (30 2750 W)	2 S	-*	-	X435AC103 (20 750W)	3 S
	HF4304-015	15	DU-401S	1	X435AC069 (10 2750 W)	3 S	DU-402S	1	X435AC069 (10, 750W)	4 S
	HF4304-022	22	DU-401S	1	X435AC063 (4.5s 750W)	3 S	DU-403S	1	X435AC063 (4.5 2750 W)	4S
	HF4304-030	30	DU-409S	1	X435AC063 (4.5s 750W)	4S	DU-404S	1	X435AC064 (2.58 750W)	8S
	HF4304-037	37	DU-409S	1	X435AC064 (2.58 750W)	4S	DU-405S	1	X435AC054 (1.6 750W)	10 S
	HF4304-045	45	DU-410S	1	X435AC054 (1.6 2750 W)	5S	DU-406S	1	X435AC065 (1.12 750W)	12S
	HF4304-055	55	DU-410S	1	X435AC054 (1.68 750W)	6S	DU-407S	1	X435AC066 (0.6 2750 W)	16S

* A braking unit is unnecessary because a braking circuit is built in the inverter. Use an external thermal relay for protection of the resistor from heating. When the thermal relay is activated, turn off the input power of the inverter. Set the usage rate with inverter parameters for protection from overloading.
$* * \mathrm{P}$ in the column of the number of resistors means parallel connection and S means series connection.

Wire size (Terminal P/PR/N)

Type of braking unit		Wire	Type	raking unit	Wire
$\begin{aligned} & 200 \mathrm{~V} \\ & \text { class } \end{aligned}$	DU-201S	$3.5 \mathrm{~mm}^{2}$	$\begin{aligned} & 400 \mathrm{~V} \\ & \text { class } \end{aligned}$	DU-401S	$2 \mathrm{~mm}^{2}$
	DU-202S			DU-402S	$3.5 \mathrm{~mm}^{2}$
	DU-203S	$5.5 \mathrm{~mm}^{2}$		DU-403S	
	DU-204S			DU-404S	
	DU-205S	$8 \mathrm{~mm}{ }^{2}$		DU-405S	$5.5 \mathrm{~mm}^{2}$
	DU-207S	$3.5 \mathrm{~mm}^{2}$		DU-406S	
	DU-208S			DU-407S	$8 \mathrm{~mm}^{2}$
				DU-408S	$2 \mathrm{~mm}^{2}$
			DU-409S	$3.5 \mathrm{~mm}^{2}$	
			DU-410S		

$2 \mathrm{~mm}^{2}$ wire size (terminals P and PR) for HF4302-5A5, -7A5, -011 and HF4304-5A5, -7A5, -011

Operating rate \%ED $=\frac{t_{B}}{t_{c}} \times 100$
$\mathrm{t}_{\mathrm{B}}=$ Braking time (sec)
tc =Cycle time (sec)

Notes:

1. The maximum temperature of the braking resistor is approx. $150^{\circ} \mathrm{C}$. Use heat-resistant wire. When installing the resistor pay close attention to the location with regards to clearance from heat sensitive elements.
2. The maximum wire length shall be 5 m . Twist the wire.
3. Improper connection of P, N, and PR will lead to failure of the inverter and braking unit. Make sure that the same terminal codes are connected.
4. The braking resistor may become hot during operation. Do not touch it directly with bare hands.

Braking unit／braking resistor

Connection diagram of braking unit／braking resistor
（1）When one braking unit is used
（2）When two braking units are used

The above are examples of installation of jumpers when the inverter supply voltage is 200／220 V and 400／440 V．

Dimensions of braking unit

Size of terminal screw thread			Weight
Type	Main circuit terminal	$\begin{array}{\|c} \text { Control circuit } \\ \text { terminal } \end{array}$	
DU－ロロロロ	P，PR，N	M1－E2	
201S，202S			
207S，208S			
401S，402S			
403S，404S			
408S，409S			
410 S			
203S，204S			
205S，206S			
405S，406S			
407S			

Dimensions of braking resistor 750W

300W

400W

Note．When mounting the braking resistor，keep a least a 50 mm clearance around the resistor．
（A）$\stackrel{50 \mathrm{~mm}}{\longleftrightarrow}$（B）

[Installation]

When the inverter installation conditions are as follows, install an AC reactor on the primary side:
(1) The capacity of the power transformer exceeds 500 kV .
(2) The capacity of the power transformer exceeds 30 times the inverter capacity. AC current with a large peak value flows through the primary side of the inverter. This peak current increases in proportion to the capacity of the power transformer, leading to failure of the converter section in some cases. For prevention of such failure, an AC reactor must be installed. Especially in the case of a 400 V class power supply, care must be exercised because operation with a large capacity transformer is common.
(3) Sudden change in supply voltage is expected.
(Example) When the phase advancing capacitor is changed over (charge/release) on the high voltage side.
(4) Large-capacity thyristor Leonard equipment or other phase control equipment is installed on the same power supply system as the inverter.
(5) The unbalance in the supply voltage is large
(6) A phase advancing capacitor is installed in the same power supply system as the inverter.
(7) Power factor improvement is necessary. Power factor can be improved by using AC or DC reactors on the inverter input side.
(8) Harmonic suppression is necessary.

AC reactor

Fig. 1

Fig. 4

Fig. 2

Fig. 3

Fig. 6

Fig. 5

$\begin{aligned} & \infty \\ & \cdot \frac{1}{\vdots} \\ & 0 \\ & \infty \\ & \vdots \\ & 0 \\ & N \end{aligned}$	Applicable rating (kW)	Specifications		Item No. Y220CA-	W	D1	D2	H1	H2	A	B	G	T	Weight (kg)	Insulation	Figure
		Current (A)	$L(\mathrm{mH})$													
	5.5	24	0.5	058	155	45	40	150	180	80	50	5	M5	3.9	F	
	7.5	33	0.4	059	155	45	40	150	185	80	50	5	M6	4.4	F	
	11	47	0.3	060	155	50	45	150	185	80	55	5	M6	5.4	F	
	15	63	0.2	061	185	60	55	175	215	80	65	6	M6	7.2	F	
	22	92	0.15	063	185	53	48	175	220	80	65	6	M8	8.6	F	
	30	130	0.1	064	185	60	55	175	230	80	80	6	M10	10.5	F	
	37	155	0.08	065	220	130	55	205	-	90	85	7	M10	13.0	F	2
	45	190	0.07	066	220	140	65	205	240	90	100	7	M10	16.0	F	4
	55	220	0.06	067	220	150	65	205	240	90	100	7	M12	19.0	F	

$\begin{aligned} & \mathscr{D} \\ & -\frac{1}{U} \\ & \text { 心 } \end{aligned}$	Applicable rating (kW)	Specifications		$\begin{aligned} & \text { Item No. } \\ & \text { Y220CA- } \end{aligned}$	W	D1	D2	H1	H2	A	B	G	T	Weight (kg)	Insulation	Figure
		Current (A)	$\mathrm{L}(\mathrm{mH})$													
	5.5	13	2.0	085	155	45	40	150	175	80	50	5	M4	4.2	B	
	7.5	17	1.5	086	155	45	40	150	175	80	50	5	M5	4.4	B	
	11	25	1.0	087	155	50	45	150	180	80	55	5	M5	5.5	F	
	15	33	0.7	088	185	53	48	175	210	80	65	6	M6	6.3	F	1
O	22	48	0.5	090	185	60	55	175	215	80	80	6	M6	9.0	F	
-	30	66	0.4	091	185	60	55	175	215	80	80	6	M6	11.0	F	
	37	80	0.3	092	185	70	60	175	220	80	95	6	M8	12.0	F	
	45	100	0.25	093	220	60	55	205	250	90	85	7	M8	14.0	F	3
	55	120	0.21	094	220	75	65	205	265	90	100	7	M10	17.0	F	5

Peripheral equipment

DC reactor

- Remove the shorting bar from the reactor connection terminal of the inverter, and connect the DC reactor before use.
- Determine the place of installation so that the wiring distance from the inverter will be as short as possible.
- As with any harmonic suppression techniques, using the DC reactor in combination with AC reactor will improve overall noise suppression.
- When installing in a location with substantial vibration, use vibration absorbing mounts or a stabilizer to dampen vibration to the reactor.

$\frac{\mathscr{D}}{\stackrel{\otimes}{2}}$	Applicable rating (kW)	Specifications		Item No. Y220DA-	Dimension (mm)									N	T	Weight (kg)
		Current (A)	$\mathrm{L}(\mathrm{mH})$		A	a	B	b	H_{1}	H_{2}	W	F	G			
	5.5	28.0	1.47	038	90	60	62	52	140	170	75	-	-	dia. 5	M5	2.4
	7.5	38.0	1.11	039	100	80	95	80	140	170	95	5.5	7	-	M5	3.5
	11	55.0	0.79	040	100	80	95	80	140	175	100	5.5	7	-	M6	4.1
>	15	75.0	0.59	041	125	105	105	80	142	175	120	5.5	7	-	M6	5.3
	22	110.0	0.40	043	140	120	110	90	150	205	135	6.5	9	-	M8	7.5
	30	150.0	0.30	044	150	120	120	100	150	215	145	6.5	9	-	M8	9.4
	37	190.0	0.25	045	160	130	135	115	170	240	170	6.5	9	-	M10	12.3
	45	230.0	0.20	046	170	130	135	115	173	255	170	6.5	9	-	M10	13.3

	$\begin{gathered} \text { Applicable } \\ \text { rating } \\ \text { (kW) } \end{gathered}$	Specifications		Item No. Y220DA-	Dimension (mm)									N	T	Weight (kg)
		Current (A)	$\mathrm{L}(\mathrm{mH})$		A	a	B	b	H_{1}	H_{2}	W	F	G			
	5.5	14.0	5.87	008	90	60	62	52	140	165	75	-	-	dia. 5	M5	1.5
	7.5	19.0	4.46	009	100	80	95	80	140	165	95	5.5	7	-	M5	3.5
	11	27.5	3.13	010	100	80	95	80	140	165	100	5.5	7	-	M5	3.9
	15	37.5	2.35	011	125	105	105	80	142	175	120	5.5	7	-	M6	5.3
	22	55.0	1.60	013	140	120	110	90	150	185	135	6.5	9	-	M6	7.3
	30	75.0	1.22	014	150	120	120	100	150	205	145	6.5	9	-	M8	9.2
	37	92.5	0.99	015	160	130	135	115	170	225	170	6.5	9	-	M8	12.0
	45	113.0	0.81	016	170	130	135	115	170	230	170	6.5	9	-	M8	13.0
	55	138.0	0.66	017	180	150	145	120	170	255	170	-	-	dia. 8	M8	15.3

Noise filter

1.Input/Output side filter

Install input/output side filters in order to lower the noise level from the inverter and protect peripheral equipment from the adverse effects of noise. The standard input-side filters are the LC-type noise filter, zero-phase reactor, and capacitive (XY) filter, while the standard output-side filter is the zero-phase reactor. When filters that conform to the noise control regulations is desired, contact our Sales Division.
LC filter : Substantially attenuates noise from the inverter.
Zero-phase reactor : Lowers the level of noise transmitted from the power supply side or output side
Capacitive filter : Lowers the level of noise in the AM radio frequency band.
2.Capacitive filter (XY filter) (Made by Okaya Denki Sangyo)
[Applicable type]
Common to all ratings; 200/400 V common 3XYHB-105104
X480AC185
[Method of connection]
(1) Connect it directly to the inverter input (power supply) terminal. Make the connection line as short as possible.
(2) Ensure correct grounding. (Grounding resistance: 100Ω or less)
(3) Do not use on the inverter output (motor) side.

3.Zero-phase reactor: RC9129 (Made by Soshin Denki) X480AC192

[Method of connection]

(1) It can be used on both inverter input (power supply) side and output (motor) side.
(2) Wind the three wires of respective phases on the input or output side more than three times (4 turns) in the same direction. When winding wires more than three times (4 turns) is impossible because the wire is too thick, install two or more zerophase reactors side by side to reduce the number of turns.
(3) Make the gap between the cable and core as small as possible.

Wire size (Note)	$14 \mathrm{~mm}^{2}$ or less	$14-30 \mathrm{~mm}^{2}$	$22 \mathrm{~mm}^{2}-$
Winding turns	3 times (4T)	Once (2T)	Through (1T)
Qty	1 pc	2 pcs	4 pcs
Winding method			

Note: The size of wire differs according to the kind of wire (flexblty).

4.LC filter (High attenuation filter made by Soshin Denki)

Contact our company for the general-purpose filter, output-side LC filter, and filters (installed on the output side) that conform to various standards (VCCI, FCC, and VDE).

List of LC filters

Applicable motor (kW)	Model	200V input side	Fig.
		Type	
5.5	X480AC291	NF3030A-VZ	Fig.1
7.5	X480AC292	NF3040A-VZ	
11	X480AC293	NF3080A-RQ2	Fig.2
15			
22	X480AC294	NF3150A-RQ2	
-37	X480AC295	NF3200A-RQ2	Fig.3
-55	X480AC308	NF3250A-RQ2	

Note: Ground the LC filter with its own ground connection

Applicable motor (kW)	Model	400 V input side	Fig.
		Type	
5.5	X480AC297	NF3020C-VZ	Fig. 1
7.5			
11	X480AC298	NF3030C-VZ	
15	X480AC299	NF3040C-VZ	
22	X480AC300	NF3080C-RQ2	Fig. 2
30			
37	X480AC301	NF3100C-RQ2	
-55	X480AC303	NF3150C-RQ2	

Peripheral equipment

Dimensional drawing of LC filter

Fig. 1

Model	Type	A	B	C	D	E	F	G	H	J	K	L
X480AC291	NF3030A-VZ	145	135	125	70	50	42	1.0	4.5×6	dia.4.5	M4	M4
X480AC292	NF3040A-VZ	179	167	155	90	70	54	1.6			M5	
X480AC296	NF3010C-VZ	128	118	108	63	43	42	1.0				
X480AC297	NF3020C-VZ										M4	
X480AC298	NF3030C-VZ	145	135	125	70	50						
X480AC299	NF3040C-VZ	179	167	155	90	70	54	1.6			M5	

Fig. 2

Model	Type	A	B	C	D	E	F	G	H	J	K	L	M	N	P
X480AC293	NF3080A-RQ2	217	200	185	170	120	90	44	115	85	20	5.5×7	dia.5.5	M6	M4
X480AC294	NF3150A-RQ2	314	300	280	260	200	170	57	130	90	35	6.5×8	dia.6.5	M8	M6
X480AC300	NF3080C-RQ2	217	200	185	170	120	90	44	115	85	20	5.5×7	dia.5.5	M6	M4
X480AC301	NF3100C-RQ2	254	230	215	200	150	120	57	115	80	30	6.5×8	dia.6.5	M8	M6
X480AC302	NF3150C-RQ2	314	300	280	260	200	170	57	130	90	35	6.5×8	dia.6.5	M8	M6

Fig. 3

Model	Type	A	B	C	D	E	F	G	H	J	K	L
X480AC295	NF3200A-RQ2	450	430	338	100	190	230	7	180	(133)	M10	M8
X480AC308	NF3250A-RQ2											

(Connection method)

(1) Install the filter between the power supply and inverter input terminal. Make the connection wire between the inverter and filter as short as possible.
(2) Use thick short grounding wire as much as possible. Connect the grounding wire correctly.
(3) Separate the input/output lines of the filter.

(4) The filter cannot be used on the inverter output (motor) side.

\% speed meter: DCF-12N [10V F.S.]

0-100\%; 50divisions (X525AA048)

AC ammeter: ACF-12N

The CT directly detects the current of the secondary side of the inverter.

Table of combination of AC ammeter (ACF-12N) and current transformer

Motor capacity (kW)	200V class						400 V class					
	Part No.	Meter		CT		Number of primary through holes	Part No.	Meter		CT		Number of primary through holes
		Rated current [A]	Max. scale [A]	Type				Rated current [A]	Max. scale [A]	Type		
5.5	X525AA042	5	50	COM-15-26	50/5A	3	X525AA082	5	20	COMA-15	20/5A	-
7.5	X525AA042	5	50	COM-15-26	50/5A	3	X525AA083	5	30	COMA-15	30/5A	-
11	X525AA043	5	75	COM-15-26	75/5A	2	X525AA042	5	50	COM-15-26	50/5A	3
15	X525AA116	5	100	COM-15-30	100/5A	2	X525AA042	5	50	COM-15-26	50/5A	3
22	X525AA044	5	150	COM-15-26	150/5A	1	X525AA043	5	75	COM-15-26	75/5A	2
30	X525AA045	5	200	COM-15-30	200/5A	1	X525AA116	5	100	COM-15-30	100/5A	2
37	X525AA046	5	250	COM-15-30	250/5A	1	X525AA044	5	150	COM-15-26	150/5A	1
45	X525AA047	5	300	COM-15-30	300/5A	1	X525AA044	5	150	COM-15-26	150/5A	1
55	X525AA121	5	400	COM-15-30	400/5A	1	X525AA045	5	200	COM-15-30	200/5A	1

[^0]
Motor temperature rise

When a general-purpose motor is used in variable-speed operation with an inverter, the temperature rise of the motor will be slightly greater than in cases where commercial power is used. The causes are shown below:
Influence of output waveform Unlike commercial power, the output waveform of an inverter is not a perfect sine wave, and contains higher harmonics. Therefore, the motor loss increases and the temperature is slightly higher.
Reduction in the motor cooling effect \cdots Motors are cooled by the fan on the motor itself. When the motor speed is reduced by an during slow-speed operation inverter, the cooling effect will decrease.
Therefore, lower the load torque or use an inverter motor to control temperature rise when the frequency is below the frequency of commercial power.

Life of major parts

The electrolytic capacitor, cooling fan, and other parts used for inverters are consumables. Their life substantially depends on the operating condition of inverters. When replacement is necessary, contact our dealer or service center. Refer to "Recommendation on periodical inspection of general-purpose inverters" published by the Japan Electrical Manufacturers' Association.

1. Warranty policy on inverter

Warranty period	The warranty shall be 18 months from date of shipment or 12 months after intial operation, whichever is shorter.
Warranty condition	In the event that any problem or damage to the Product arises during the "Warranty Period" from defects in the Product whenever the Product is properly installed and combined with the Buyer's equipment or machines maintained as specified in the maintenance manual, and properly operated under the conditions described in the catalog or as otherwise agreed upon in writing between the Seller and the Buyer or its customers; the Seller will provide, at its sole discretion, appropriate repair or replacement of the Product without charge at a designated facility, except as stipulated in the "Warranty Exclusions" as described below. However, if the Product is installed or integrated into the Buyer's equipment or machines, the Seller shall not reimburse the cost of: removal or re-installation of the Product or other incidental costs related thereto, any lost opportunity, any profit loss or other incidental or consequential losses or damages incurred by the Buyer or its customers.
Warranty exclusion	Not withstanding the above warranty, the warranty as set forth herein shall not apply to any problem or damage to the Product that is caused by: 1. Installation, connection, combination or integration of the Product in or to the other equipment or machine that rendered by any person or entity other than the Seller; 2. Insufficient maintenance or improper operation by the Buyer or its customers such that the Product is not maintained in accordance with the maintenance manual provided or designated by the Seller; 3. Improper use or operation of the Product by the Buyer or its customers that is not informed to the Seller, including, without limitation, the Buyer's or its customers' operation of the Product not in conformity with the specifications; 4. Any problem or damage on any equipment or machine to which the Product is installed, connected or combined or any specifications particular to the Buyer or its customers; 5. Any changes, modifications, improvements or alterations to the Product or those functions that are rendered on the Product by any person or entity other than the Seller; 6. Any parts in the Product that are supplied or designated by the Buyer or its customers; 7. Earthquake, fire, flood, salt air, gas, lightning, acts of God or any other reasons beyond the control of the Seller; 8. Normal wear and tear, or deterioration of the Product's parts, such as the cooling fan bearings; 9. Any other troubles, problems or damage to the Product that are not attributable to the Seller.
Others	The Seller will not be responsibility for the installation and removal of the inverter. Any inverter transportation cost shall be born by both Seller and Buyer.

2. Warranty policy on Repaired and returned products

Warranty period	The warranty shall be 6 months from date of repair and shipment.
Warranty condition	Warranty on repaired Product will apply only on the replacement parts used in the repair done or authorized by the Seller. All other aspects conform to the Warranty Conditions described in item 1.
Warranty exclusion	Please refer to Warranty Exclusions described in item 1.
Others	Please refer to Others described in item 1.

M E M O

M E M O

[^0]: Construction of current transformer (CT) COMA-15 type: Totally molded current transformer with primary winding COM-15-26 type: Totally molded current transformer, throughholes type COM-15-30 type: Totally molded current transformer, throughholes type Install the current transformer (CT) on the output side of the inverter.

