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Abstract It is well known that entanglement of formation (EOF) and relative entropy
of entanglement (REE) are exactly identical for all two-qubit pure states even though
their definitions are completely different. We think this fact implies that there is a veiled
connection between EOF and REE. In this context, we suggest a procedure, which
enables us to compute REE from EOF without relying on the converse procedure. It is
shown that the procedure yields correct REE for many symmetric mixed states such as
Bell-diagonal, generalized Vedral–Plenino, and generalized Horodecki states. It also
gives a correct REE for less symmetric Vedral–Plenio-type state. However, it is shown
that the procedure does not provide correct REE for arbitrary mixed states.

Keywords Relative entropy of entanglement · Entanglement of formation · The
closest separable state

1 Introduction

Entanglement of formation (EOF) [1] and relative entropy of entanglement (REE)
[2,3] are two major entanglement monotones for bipartite systems. For pure states
ρ = |ψ〉〈ψ |, the EOF EF (ρ) is defined as a von Neumann entropy of its subsystem
ρA = trBρ. On the contrary, REE is defined as minimum value of the relative entropy
with separable states;

ER(ρ) = min
σ∈D

tr(ρ ln ρ − ρ ln σ), (1.1)
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where D is a set of separable states.1 It was shown in Ref. [3] that ER(ρ) is a upper
bound of the distillable entanglement [1]. The separable state σ∗, which yields a
minimum value of the relative entropy, is called the closest separable state (CSS)
of ρ. Surprising fact, at least for us, is that although definitions of EOF and REE
are completely different, they are exactly same for all pure states [3]. This fact may
indicate that they are related to each other although the exact connection is not revealed
yet. The main purpose of this paper is to explore the veiled connection between EOF
and REE.

For mixed states ρ, EOF is defined via a convex-roof method [1,7];

EF (ρ) = min
∑

i

piEF (ρi ), (1.2)

where the minimum is taken over all possible pure-state decompositions with
0 ≤ pi ≤ 1 and

∑
i pi = 1. The ensemble that gives the minimum value in Eq. (1.2)

is called the optimal decomposition of the mixed state ρ. Thus, the main task for
analytic calculation of EOF is derivation of an optimal decomposition of the given
mixture. Few years ago, the procedure for construction of the optimal decomposition
was derived [8,9] in the two-qubit system, the simplest bipartite system, by making use
of the time-reversal operation of spin-1/2 particles appropriately. In these references,
the relation

EF (C) = h

(
1 + √

1 − C2

2

)
(1.3)

is used, where h(x) is a binary entropy function h(x) = −x ln x −(1−x) ln(1−x) and
C is called the concurrence. This procedure, usually called Wootters procedure, was
re-examined in Ref. [7] in terms of antilinearity. Introduction of antilinearity in quan-
tum information theory makes it possible to derive concurrence-based entanglement
monotones for tripartite [10] and multipartite systems [11,12]. Due to the discovery of
the closed formula for EOF in the two-qubit system, EOF is recently applied not only
to quantum information theory but also to many scientific fields such as life science
[13].

While EOF is used in various areas of science, REE is not because of its calculational
difficulty. In order to obtain REE analytically for given mixed stateρ, one should derive
its CSS, but still we don’t know how to derive CSS [14] even in the two-qubit system
except very rare cases [3,16,17]. In Ref. [16], REE for Bell-diagonal, generalized
Vedral–Plenio [3], and generalized Horodecki states [18] were derived analytically
through pure geometric arguments [15].

Due to the notorious difficulty, some people try to solve the REE problem con-
versely. Let σ∗ be a two-qubit boundary states in the convex set of the separable states.
In Ref. [19], authors derived entangled states, whose CSS are σ∗. This converse pro-
cedure is extended to the qudit system [20] and is generalized as convex optimization

1 Since REE is defined through another separable state σ , it is called “distance entanglement measure”.
Another example of the distance entanglement measure is a geometric entanglement measure defined as
Eg(ψ) = 1 − Pmax, where Pmax is a maximal overlap of a given state |ψ〉 with the nearest product state
[4–6].
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Fig. 1 (Color online) The schematic diagram of the procedure, by which REE can be computed from
EOF. The polygon at the center is a deformed octahedron [15,16]. Inside and outside of the octahedron
separable and entangled states reside, respectively. The CSS of the entangled state resides at the surface of
the octahedron

problems [21]. However, as emphasized in Ref. [16] still it is difficult to find a CSS σ∗
of given entangled state ρ although the converse procedure may provide some useful
information on the CSS [17].

In this paper, we will try to find a CSS for given entangled two-qubit state without
relying on the converse procedure. As commented, EOF and REE are identical for
bipartite pure states although they are defined differently. This means that they are
somehow related to each other. If this connection is unveiled, probably we can find
CSS for arbitrary two-qubit mixed states because we already know how to compute
EOF through Wootters procedure. To explore this issue is original motivation of this
paper. We will show in the following that REE of many mixed symmetric states can
be analytically obtained from EOF if one follows the following procedure:

(1) For entangled two-qubit state ρ, let ρ = ∑
j p jρ j (ρ j = |ψ j 〉〈ψ j |) be an

optimal decomposition for calculation of EOF.
(2) Since ρ j are pure states, it is possible to obtain their CSS σ j . Thus, it is straight

to derive a separable mixture σ̃ = ∑
j p jσ j .

(3) If σ̃ is a boundary state in the convex set of separable states, the procedure is
terminated with σ∗ = σ̃ .

(4) If σ̃ is not a boundary state, we considerπ = qρ+(1−q)σ̃ . By requiring thatπ is a
boundary state, one can fix q, say q = q0. Then, we identify σ∗ = q0ρ+(1−q0)σ̃ .

This procedure is schematically represented in Fig. 1.
In order to examine the validity of the procedure, we have to apply the procedure

to the mixed states whose REE are already known. Thus, we will choose the Bell-
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diagonal, generalized Vedral–Plenio, and generalized Horodecki states, whose REE
were computed in Ref. [3,16,19] through different methods. Also, we will apply
the procedure to the less symmetric mixed states such as Vedral–Plenio-type and
Horodecki-type states whose REE were computed in Ref. [17] by making use of the
the converse procedure introduced in Ref. [19].

The paper is organized as follows. In Sect. 2, we show that the procedure generates
the correct CSS for Bell-diagonal states. In Sects. 3 and 4, we show that the procedure
generates the correct CSS for generalized Vedral–Plenio and generalized Horodecki
states, respectively. In Sect. 5, we consider two less symmetric states, Vedral–Plenio-
type and Horodecki-type states. It is shown that while the procedure generates a
correct CSS for the former, it does not give a correct one for the latter. In Sect. 6, a
brief conclusion is given. In “Appendix,” we prove that EOF and REE are identical
for all pure states by making use of the Schmidt decomposition. The Schmidt bases
derived in this “Appendix” are used in the main body of this paper.

2 Bell-diagonal states

In this section, we will show that the procedure mentioned above solves the REE
problem of the Bell-diagonal states:

ρBD = λ1|β1〉〈β1|+λ2|β2〉〈β2|+λ3|β3〉〈β3|+λ4|β4〉〈β4| (2.1)

where
∑4

j=1 λ j = 1, and

|β1〉 = 1√
2
(|00〉 + |11〉) |β2〉 = 1√

2
(|00〉 − |11〉)

|β3〉 = 1√
2
(|01〉 + |10〉) |β4〉 = 1√

2
(|01〉 − |10〉). (2.2)

The CSS and REE of ρBD were obtained in many literatures [3,16,17] through various
different methods. If, for convenience, max(λ1, λ2, λ3, λ4) = λ3 , the CSS and REE
of ρBD are

πBD = λ1

2(1 − λ3)
|β1〉〈β1|+ λ2

2(1 − λ3)
|β2〉〈β2|+1

2
|β3〉〈β3|+ λ4

2(1 − λ3)
|β4〉〈β4|

ER(ρBD) = −h(λ3)+ ln 2. (2.3)

Now, we will show that the procedure we suggested also yields the same result.
Following Wootters procedure, one can show that the optimal decomposition of ρBD
for λ3 ≥ 1/22 is

ρBD =
4∑

j=0

p j |ψ B D
j 〉〈ψ B D

j | (2.4)

2 If λ3 ≤ 1/2, ρBD is a separable state.
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where p j = 1/4 ( j = 1, . . . , 4) and

|ψ B D
1 〉 = √

λ1|β1〉 + i
√
λ2|β2〉 +√

λ3|β3〉 +√
λ4|β4〉

|ψ B D
2 〉 = √

λ1|β1〉 + i
√
λ2|β2〉 −√

λ3|β3〉 −√
λ4|β4〉

|ψ B D
3 〉 = √

λ1|β1〉 − i
√
λ2|β2〉 +√

λ3|β3〉 −√
λ4|β4〉

|ψ B D
4 〉 = √

λ1|β1〉 − i
√
λ2|β2〉 −√

λ3|β3〉 +√
λ4|β4〉. (2.5)

All |ψ B D
j 〉 ( j = 1, . . . , 4) have the same concurrence C = 2λ3 − 1 and, hence, the

same λ± (defined in Eq. 7.2) as

λ± = 1

2

(√
λ3 ±√

1 − λ3

)2
. (2.6)

The Schmidt bases of |ψ B D
1 〉 can be explicitly derived by following the procedure

of “Appendix,” and the result is

|0A〉 = 1

N+

[(√
1 − λ3 +√

λ4

)
|0〉 +

(√
λ1 − i

√
λ2

)
|1〉
]

|1A〉 = −1

N−

[(√
1 − λ3 −√

λ4

)
|0〉 −

(√
λ1 − i

√
λ2

)
|1〉
]

|0B〉 = 1

N+

[(√
λ1 + i

√
λ2

)
|0〉 +

(√
1 − λ3 +√

λ4

)
|1〉
]

|1B〉 = 1

N−

[(√
λ1 + i

√
λ2

)
|0〉 −

(√
1 − λ3 −√

λ4

)
|1〉
]
, (2.7)

where the normalization constants N± are

N± =
√

2
√

1 − λ3

(√
1 − λ3 ±√

λ4

)
. (2.8)

Thus, the CSS of |ψ B D
1 〉, say σ1, can be straightforwardly computed by making use

of Eq. (7.6);

σ1 = λ+|0A0B〉〈0A0B |+λ−|1A1B〉〈1A1B |

= 1

4 (1 − λ3)

⎛

⎜⎜⎝

μμ∗ μν+ μν− μ2

μ∗ν+ d+ μμ∗ μν+
μ∗ν− μμ∗ d− μν−
(μ∗)2 μ∗ν+ μ∗ν− μμ∗

⎞

⎟⎟⎠ , (2.9)

where

μ = √
λ1 + i

√
λ2 ν± = 2 (1 − λ3)

√
λ3 ±√

λ4

d± = (1 − λ3 + λ4)± 4 (1 − λ3)
√
λ3λ4. (2.10)
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Similarly, one can derive the Schmidt bases for other |ψ B D
j 〉 ( j = 2, 3, 4) and the

corresponding CSS σ j . Then, one can show that the separable state σ̃ = ∑4
j=1 p jσ j

with p j = 1/4 for all j is

σ̃ = 1

4 (1 − λ3)

⎛

⎜⎜⎝

λ1 + λ2 0 0 λ1 − λ2
0 1 − λ3 + λ4 λ1 + λ2 0
0 λ1 + λ2 1 − λ3 + λ4 0

λ1 − λ2 0 0 λ1 + λ2

⎞

⎟⎟⎠. (2.11)

This is a boundary state in the convex set of the separable states, because the minimal
eigenvalue of its partial transposition, say σ̃ 	 , is zero. Thus, the procedure mentioned
in the Introduction is terminated with identifying σ∗ = σ̃ . In fact, it is easy to show
that σ̃ is exactly the same with πBD in Eq. (2.3). Thus, the procedure we suggested
correctly derives the CSS of the Bell-diagonal states.

3 Generalized Vedral–Plenio state

In this section, we will derive the CSS of the generalized Vedral–Plenio (GVP) state
defined as

ρvp = λ1|β3〉〈β3|+λ2|01〉〈01|+λ3|10〉〈10| (λ1 + λ2 + λ3 = 1) (3.1)

by following the procedure mentioned above. In fact, the CSS and REE of the GVP
were explicitly derived in Ref. [16] using a geometric argument, which are

πvp =
(
λ1

2
+ λ2

)
|01〉〈01|+

(
λ1

2
+ λ3

)
|10〉〈10|

ER(ρvp) = h

(
λ1

2
+ λ2

)
− h(
+) (3.2)

where


± = 1

2

[
1 ±

√
λ2

1 + (λ2 − λ3)
2
]
. (3.3)

Now, we define

a = λ1
+√
λ2

1 + (λ2 − λ3)2
b = − (λ2 − λ3)

√

+
−√

λ2
1 + (λ2 − λ3)2

c = − λ1
−√
λ2

1 + (λ2 − λ3)2

(3.4)
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and �2 = 2[(a − c)2 + 4b2 − (a − c)
√
(a − c)2 + 4b2]. We also define the

unnormalized states |v±〉 = √

±|
±〉, where |
±〉 are eigenstates of ρvp;

|
+〉 = 1

N

[(√
λ2

1 + (λ2 − λ3)
2 + (λ2 − λ3)

)
|01〉 + λ1|10〉

]

|
−〉 = 1

N

[
λ1|01〉 −

(√
λ2

1 + (λ2 − λ3)
2 + (λ2 − λ3)

)
|10〉

]
. (3.5)

In Eq. (3.5), N is a normalization constant given by

N 2 = 2
√
λ2

1 + (λ2 − λ3)
2
{√

λ2
1 + (λ2 − λ3)

2 + (λ2 − λ3)

}
. (3.6)

Then, following Ref. [9], the optimal decomposition of ρvp for EOF is ρvp = ∑2
j=1

p j |ψVP
j 〉〈ψVP

j |, where p1 = p2 = 1/2 and

|ψVP
1 〉 = −i

�

[
2b − i

{√
(a − c)2 + 4b2 − (a − c)

}]
(|v+〉 + i |v−〉)

|ψVP
2 〉 = −i

�

[
2b + i

{√
(a − c)2 + 4b2 − (a − c)

}]
(|v+〉 − i |v−〉) . (3.7)

Following “Appendix,” one can derive the CSS for |ψVP
j 〉 directly. Then, one can

realize that |ψVP
1 〉 and |ψVP

2 〉 have the same CSS, which is identical with πvp. Thus,
the procedure also gives a correct CSS for the GVP states.

4 Generalized Horodecki states

In this section, we will show that the procedure also generates the correct CSS for the
generalized Horodecki states

ρH = λ1|β3〉〈β3| + λ2|00〉〈00| + λ3|11〉〈11| (4.1)

with λ1 + λ2 + λ3 = 1 and λ1 ≥ 2
√
λ2λ3.3 The CSS and REE of ρH were derived in

Ref. [16] using a geometrical argument, and the results are

πH = (λ1 + 2λ2)(λ1 + 2λ3)

2
|β3〉〈β3|+ (λ1 + 2λ2)

2

4
|00〉〈00|

+ (λ1 + 2λ3)
2

4
|11〉〈11|

ER(ρH ) = λ1 ln λ1 + λ2 ln λ2 + λ3 ln λ3 + 2h

(
λ1

2
+ λ2

)
− λ1 ln 2. (4.2)

3 If λ1 ≤ 2
√
λ2λ3, ρH becomes a separable state.
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Following Ref. [9], one can straightforwardly construct the optimal decomposition
of ρH for EOF, which is ρH = ∑3

j=1 p j |ψH
j 〉〈ψH

j |, where p1 = p2 = p3 = 1/3
and

|ψH
1 〉 = √

λ1|β3〉 +√
λ2|00〉 +√

λ3|11〉
|ψH

2 〉 = √
λ1|β3〉 +√

λ2ei2π/3|00〉 +√
λ3e−i2π/3|11〉

|ψH
3 〉 = √

λ1|β3〉 +√
λ2ei4π/3|00〉 +√

λ3e−i4π/3|11〉. (4.3)

In order to treat |ψH
j 〉 as an unified manner, let us consider |φ〉 = √

λ1|β3〉
+ √

λ2eiθ |00〉 + √
λ3e−iθ |11〉. Then, λ± defined in Eq. (7.2) is

λ± =
(

R ± (√
λ2 + √

λ3
)

2

)2

(4.4)

where R =
√

2λ1 + (√
λ2 − √

λ3
)2

. Since λ± is independent of θ , this fact indi-

cates that λ± of |ψH
j 〉 are equal to Eq. (4.4) for all j . Following “Appendix,” it is

straightforward to show that the Schmidt bases of |φ〉 are

|0A〉 =
√

λ1

R
[
R − (√

λ2 − √
λ3
)] |0〉 +

√
R − (√

λ2 − √
λ3
)

2R
e−iθ |1〉

|1A〉 = −
√

λ1

R
[
R + (√

λ2 − √
λ3
)] |0〉 +

√
R + (√

λ2 − √
λ3
)

2R
e−iθ |1〉

|0B〉 = eiθ |0A〉 |1B〉 = −eiθ |1A〉. (4.5)

Then, the CSS σφ of |φ〉 is

σφ ≡ λ+|0A0B〉〈0A0B |+λ−|1A1B〉〈1A1B |

=

⎛

⎜⎜⎜⎝

λ1+2λ2
2 − λ1

2R2 Aeiθ Aeiθ λ1
2R2 e2iθ

Ae−iθ λ1
2R2

λ1
2R2 Beiθ

Ae−iθ λ1
2R2

λ1
2R2 Beiθ

λ1
2R2 e−2iθ Be−iθ Be−iθ λ1+2λ3

2 − λ1
2R2

⎞

⎟⎟⎟⎠ (4.6)

where

A =
√

2λ1

4R2

[
2
√
λ2 +

(√
λ2 +√

λ3

) (
λ1 − 2

√
λ2λ3

)]

B =
√

2λ1

4R2

[
2
√
λ3 +

(√
λ2 +√

λ3

) (
λ1 − 2

√
λ2λ3

)]
. (4.7)

Thus, the CSS σ j of |ψH
j 〉 can be obtained by letting θ = 0, 2π/3, 4π/3, respectively.
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Then, σ̃ = ∑3
j=1 p jσ j with p j = 1/3 ( j = 1, 2, 3) reduces

σ̃ =

⎛

⎜⎜⎜⎝

λ1+2λ2
2 − λ1

2R2 0 0 0
0 λ1

2R2
λ1

2R2 0
0 λ1

2R2
λ1

2R2 0
0 0 0 λ1+2λ3

2 − λ1
2R2

⎞

⎟⎟⎟⎠ . (4.8)

However, σ̃ is not a boundary state in the convex set of the separable states, because
the minimum eigenvalue of σ̃ 	 is positive. Thus, we define

σ∗ = x σ̃ + (1 − x)ρH . (0 ≤ x ≤ 1) (4.9)

The condition that the minimum eigenvalue of σ	∗ is zero fixes x as

x = R2

2λ1

(
λ1 + 2

√
λ2λ3

)
. (4.10)

Inserting Eq. (4.10) into σ∗, one can show that σ∗ reduces to πH . Thus, our procedure
gives a correct CSS for the generalized Horodecki states.

5 Less symmetric states

In the previous sections, we have shown that the procedure generates the correct CSS
and REE for various symmetric states such as Bell-diagonal, GVP, and generalized
Horodecki states. In this section, we will apply the procedure to the less symmetric
states.

5.1 Vedral–Plenio-type state

The first quantum state we consider is

�1 = A2|01〉〈01|+A3|10〉〈10|+D (|01〉〈10|+|10〉〈01|) , (5.1)

where A2 + A3 = 1, A2 ≥ A3, and 0 ≤ D ≤ √
A2 A3. Of course, if A2 = λ1

2 + λ2,
A3 = λ1

2 + λ3, and D = λ1
2 , �1 reduces to ρvp in Eq. (3.1). Thus, we call �1 as

Vedral–Plenio-type state.
In order to apply the procedure to �1, we introduce

R =
√
(A2 − A3)2 + 4D2 tan 2θ = 2D

A2 − A3

λ1 = 1

2
[(A2 + A3)+ R] λ2 = 1

2
[(A2 + A3)− R]

|λ1〉 = cos θ |01〉 + sin θ |10〉 |λ2〉 = sin θ |01〉 − cos θ |10〉. (5.2)
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Applying Ref. [9], it is possible to derive the optimal decomposition of �1 for EOF;
�1 = p1|w1〉〈w1|+p2|w2〉〈w2|, where

p1 = 1

2

[
1 + A2 − A3√

1 − 4D2

]
p2 = 1

2

[
1 − A2 − A3√

1 − 4D2

]
(5.3)

and

|w1〉 = 1

Y+

[(√
ξ+η+ +√

ξ−η−
)√

λ1|λ1〉 +
(√
ξ+η− −√

ξ−η+
)√

λ2|λ2〉
]

|w2〉 = 1

Y−

[(√
ξ+η− −√

ξ−η+
)√

λ1|λ1〉 −
(√
ξ+η+ +√

ξ−η−
)√

λ2|λ2〉
]
.

(5.4)

In Eq. (5.4) ξ±, η±, and Y± are

ξ± = R
√

A2 A3 ± D (A2 + A3) η± =
√

A2 A3(1 − 4D2)± D (A2 − A3)

Y2± = 2A2 A3 R
[√

1 − 4D2 ± (A2 − A3)
]
. (5.5)

Following “Appendix,” one can derive the CSS σ1 and σ2 of |w1〉 and |w2〉 after
long and tedious calculation. The final results are

σ1 =
[

cos θ
√
λ1
(√
ξ+η+ + √

ξ−η−
)+ sin θ

√
λ2
(√
ξ+η− − √

ξ−η+
)

Y+

]2

|01〉〈01|

+
[

sin θ
√
λ1
(√
ξ+η+ + √

ξ−η−
)− cos θ

√
λ2
(√
ξ+η− − √

ξ−η+
)

Y+

]2

|10〉〈10|

σ2 =
[

cos θ
√
λ1
(√
ξ+η− − √

ξ−η+
)− sin θ

√
λ2
(√
ξ+η+ + √

ξ−η−
)

Y−

]2

|01〉〈01|

+
[

sin θ
√
λ1
(√
ξ+η− − √

ξ−η+
)+ cos θ

√
λ2
(√
ξ+η+ + √

ξ−η−
)

Y−

]2

|10〉〈10|.

(5.6)

Then, σ̃ = p1σ1 + p2σ2 simply reduces to

σ̃ = A2|01〉〈01|+A3|10〉|10〉. (5.7)

This is manifestly boundary state in the convex set of separable states. Thus, the
procedure states that σ̃ is a CSS of �1. This is exactly the same with theorem 1 of
Ref. [17].
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5.2 Horodecki-type state

The second less symmetric quantum state we consider is

�2 =

⎛

⎜⎜⎝

A1 0 0 0
0 A D 0
0 D A 0
0 0 0 A4

⎞

⎟⎟⎠ (5.8)

where A1 + A4 + 2A = 1 and
√

A1 A4 < D ≤ A. If A = D = λ1/2, A1 = λ2,
and A4 = λ3, �2 reduces to ρH in Eq. (4.1). Thus, we call �2 as Horodecki-type
state. Applying Ref. [9], one can derive the optimal decomposition of �2 for EOF as
�2 = ∑4

j=1 p j |h j 〉, where p j = 1/4 for all j and

|h1〉 = √
A + D|β3〉 + √

A − D|β4〉 +√
A1|00〉 +√

A4|11〉
|h2〉 = √

A + D|β3〉 + √
A − D|β4〉 −√

A1|00〉 −√
A4|11〉

|h3〉 = √
A + D|β3〉 − √

A − D|β4〉 + i
√

A1|00〉 − i
√

A4|11〉
|h4〉 = √

A + D|β3〉 − √
A − D|β4〉 − i

√
A1|00〉 + i

√
A4|11〉. (5.9)

In order to consider |h j 〉 ( j = 1, . . . , 4) all together, we define

|ϕ1〉 = √
A + D|β3〉 + √

A − D|β4〉 + eiθ
√

A1|00〉 + e−iθ
√

A4|11〉
|ϕ2〉 = √

A + D|β3〉 − √
A − D|β4〉 + eiθ

√
A1|00〉 + e−iθ

√
A4|11〉. (5.10)

For |ϕ1〉, the Schmidt bases are

|0A〉 = 1

2Z+

[√
2
(√

A − D
√

1 + C + √
A + D

√
1 − C

)
|0〉

+ e−iθ
{(√

A1 +√
A4

)√
1 + C −

(√
A1 −√

A4

)√
1 − C

}
|1〉
]

|1A〉 = 1

2Z−

[√
2
(√

A − D
√

1 + C − √
A + D

√
1 − C

)
|0〉

+ e−iθ
{(√

A1 +√
A4

)√
1 + C +

(√
A1 −√

A4

)√
1 − C

}
|1〉
]

|0B〉 = 1

2Z+

[√
2eiθ

{√
A + D

(√
A1 +√

A4

)
+ √

A − D
(√

A1 −√
A4

)}
|0〉

+
{
− (A1 − A4)+ 2

√
A2 − D2 +

√
1 − C2

}
|1〉
]

|1B〉 = 1

2Z−

[√
2eiθ

{√
A + D

(√
A1 +√

A4

)
+ √

A − D
(√

A1 −√
A4

)}
|0〉

+
{
− (A1 − A4)+ 2

√
A2 − D2 −

√
1 − C2

}
|1〉
]
, (5.11)
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where C = 2
(
D − √

A1 A4
)

and

Z2± = 1

2

√
1 − C2

[√
1 − C2 ∓ (A1 − A4)± 2

√
A2 − D2

]
. (5.12)

Thus, the CSS σ1(θ)of |ϕ1〉 is

σ1(θ) =
(√

1 + C + √
1 − C

2

)2

|0A0B〉〈0A0B |

+
(√

1 + C − √
1 − C

2

)2

|1A1B〉〈1A1B |. (5.13)

Similarly, it is straightforward to derive the CSS σ2(θ) of |ϕ2〉. Then, one can show

�̃ ≡ 1

4

[
σ1(0)+ σ1(π)+ σ2

(π
2

)
+ σ2

(
−π

2

)]

=

⎛

⎜⎜⎝

a1 0 0 0
0 a d 0
0 d a 0
0 0 0 a4

⎞

⎟⎟⎠ (5.14)

where

a1 = 1

4(1 − C2)

[
(1 + C)

(√
A1 +√

A4

)2 + (1 − C)
(√

A1 −√
A4

)2

+ 2(1 − C2) (A1 − A4)

]

a4 = 1

4(1 − C2)

[
(1 + C)

(√
A1 +√

A4

)2 + (1 − C)
(√

A1 −√
A4

)2

− 2(1 − C2) (A1 − A4)

]

a = 1

2(1 − C2)
[(1 + C) (A − D)+ (1 − C) (A + D)]

d = 2A
√

A1 A4 + D (A1 + A4)

1 − C2 . (5.15)

One can show that if A = D = λ1/2, A1 = λ2, and A4 = λ3, �̃ reduces to Eq. (4.8).
Since �̃ is not a boundary state in the set of separable states, we define

�∗ = x�̃+ (1 − x)�2. (5.16)

Then, the CSS condition of �∗ is

[x (a1 − A1)+ A1] [x (a4 − A4)+ A4] = [x(d − D)+ D]2 . (5.17)
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In the Horodecki state limit, Eq. (5.17) gives a solution (4.10). Using a1 − A1 =
a4 − A4 = −(a − A) = f/(1 − C2) and d − D = g/(1 − C2) where

f = C (D − AC) g = C (CD − A) , (5.18)

the solution of x , say x = x∗, can be obtained by solving the quadratic equation (5.17).
Inserting x = x∗ in Eq. (5.16), one can compute �∗ explicitly, which is a candidate
of CSS for �2.

The CSS of �2 was derived in the theorem 2 of Ref. [17] by using the converse
procedure introduced in Ref. [19]. The explicit form of the CSS is

π�2 =

⎛

⎜⎜⎝

r1 0 0 0
0 r y 0
0 y r 0
0 0 0 r4

⎞

⎟⎟⎠ (5.19)

where

r1 = 1

F

[
2A1(A1 + A2)(A1 + A2 + A4)− D2(A1 − A4)+�

]

r4 = 1

F

[
2A4(A2 + A4)(A1 + A2 + A4)+ D2(A1 − A4)+�

]

r = 1

F

[
2(A1 + A2)(A2 + A4)(A1 + A2 + A4)− D2(A1 + 2A2 + A4)−�

]

(5.20)

and y = √
r1r4. In Eq. (5.20), D and � are

F = 2(A1 + A2 + A4 + D)(A1 + A2 + A4 − D)

� = D
√

D2(A1 − A4)2 + 4A1 A4(A1 + A2)(A2 + A4). (5.21)

Our candidate �∗|x=x∗ does not coincide with the correct CSS π�2 . Thus, the pro-
cedure does not give a correct REE for �2, although it gives correct REE for Bell-
diagonal, GVP, generalized Horodecki, and Vedral–Plenio-type states.

6 Conclusion

In this paper, we examine the possibility for deriving the closed formula for REE in
two-qubit system without relying on the converse procedure discussed in Ref. [19–
21]. Since REE and EOF are identical for all pure states in spite of their different
definitions, we think they should have some connection somehow. In this context, we
suggest a procedure, where REE can be computed from EOF. The procedure gives
correct REE for many symmetric states such as Bell-diagonal, GVP, and generalized
Horodecki states. It also generates a correct REE for less symmetric states such as�1.
However, the procedure failed to produce a correct REE for the less symmetric states
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�2. This means our procedure is still incomplete for deriving the closed formula of
REE.

We think still the connection between EOF and REE is not fully revealed. If this
connection is sufficiently understood in the future, probably the closed formula for
REE can be derived. We hope to explore this issue in the future.
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7 Appendix

In this section, we will show that REE and EOF are identical for two-qubit pure states.
This fact was already proven in Theorem 3 of Ref. [3]. We will prove this again more
directly, because explicit Schmidt bases are used in the main body of the paper.

Let us consider a general two-qubit pure state |ψ2〉AB = α1|00〉+α2|01〉+α3|10〉
+ α4|11〉 with |α1|2 + |α2|2 + |α3|2 + |α4|2 = 1. Then, its concurrence is
C = 2|α1α4 − α2α3|. Now, we define

x± = α∗
1α2 + α∗

3α4

N±
y± = λ± − (|α1|2 + |α3|2)

N±
(7.1)

where

λ± = 1

2

[
1 ±

√
1 − C2

]
N 2± = |α∗

1α2 + α∗
3α4|2 + |λ± − (|α1|2 + |α3|2)|2. (7.2)

Now, we consider 2 × 2 matrix u, whose components ui j are

u11 = α1

( |x+|2√
λ+

+ |x−|2√
λ−

)
+ α2

(
x∗+y+√
λ+

+ x∗−y−√
λ−

)

u12 = α1

(
x+y∗+√
λ+

+ x−y∗−√
λ−

)
+ α2

( |y+|2√
λ+

+ |y−|2√
λ−

)
(7.3)

u21 = α3

( |x+|2√
λ+

+ |x−|2√
λ−

)
+ α4

(
x∗+y+√
λ+

+ x∗−y−√
λ−

)

u22 = α3

(
x+y∗+√
λ+

+ x−y∗−√
λ−

)
+ α4

( |y+|2√
λ+

+ |y−|2√
λ−

)
.

Then, Schmidt bases for each party are defined as

|i A〉 =
1∑

j=0

v j i | j〉 |iB〉 =
1∑

k=0

wik |k〉 (i = 0, 1) (7.4)
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where

v =
(

u11 u12
u21 u22

)(
x+ x−
y+ y−

)
w =

(
x∗+ y∗+
x∗− y∗−

)
. (7.5)

Using Eq. (7.4), one can show straightforwardly that |ψ2〉AB reduces to |ψ2〉AB =√
λ+|0A0B〉 + √

λ−|1A1B〉. Thus, its CSS σ∗ are simply expressed in terms of the
Schmidt bases as

σ∗ = λ+|0A0B〉〈0A0B |+λ−|1A1B〉〈1A1B |. (7.6)

Applying Eq. (1.1), one can show easily ER(|ψ2〉) = −λ+ ln λ+ − λ− ln λ−, which is
exactly the same with EOF.
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